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Sparse coding 2D images

𝑎1 ∙≈ + 𝑎2 ∙ + 𝑎3 ∙ + 𝑎𝑁 ∙+ ⋯

𝚽 =

Sparse most of the 𝑎𝑗s are 0

𝜙1 𝜙2 𝜙3 𝜙𝑁𝑥

Approximate linear representation in 
a (typically, very) high dimensional space

Conventionally expensive but solved efficiently on Loihi!
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Sparse coding: LASSO formulation

LASSO Cost function: 𝐸 =
1

2
𝐱 −𝚽 ⋅ 𝒂 2

2 + 𝜆 ⋅ 𝒂 1

sparse code: 𝒂∗ = argmin
𝒂

𝐸(𝒂)

𝚽 ⋅ 𝒂 =  
𝑘
Φ𝑗𝑘𝑎𝑘

approx. reconstruction

Reconstruction error

𝒂 1 = 
𝑗
𝑎𝑗

ℓ-1 regularization term
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LASSO to LCA

• Want to solve LASSO…

• Using conventional gradient descent leads to ISTA/FISTA solvers.

• From ISTA derive LCA (locally competitive algorithm) dynamics.

(*) C. J. Rozell, D. H. Johnson, and R. G. Baranuik Neural Computation, 20:2526 – 2563, 2008. 

LCA* solves LASSO by gradient descent 
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LCA-derived network structure

Feature neurons compete to represent to reconstruct inputs

ai aj….

𝑥1 𝑥2

𝚽𝒊
𝑻 ⋅ 𝒙

- 𝚽𝑖
𝑇 ⋅ 𝚽𝑗 𝑎𝑗

Inhibition

Excitation

Network structure:

𝒂 = 𝒯𝜆(𝒖)

 𝒖 =
1

𝜏
𝚽𝑇𝒙 − 𝒖 − (𝚽𝑇𝚽− 𝑰) ⋅ 𝒂

LCA dynamics:
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Analog to Spiking LCA: Rate Coding

• Equivalence between analog LCA dynamics and spike based models* 

• Sparse code a is represented by neuron spiking rates 

* P. Tang, T.-H. Lin, and M. Davies, arXiv:1705.05475v1  

Analog-LCA ⟺ Spiking-LCA
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Resource efficiency through Convolutional LCA

Loihi takes advantage of convolutional topology 
for efficient network compression

• Extend to convolutional LCA

• Image patches

• Generalized (inhibitory) interaction matrix:

• 𝐖k,q = Φk
𝑇 ⋅ Φq − 𝐼

• Neurons per patch integrate input from 
overlapping patches

• Significant increase in number of connections

Patch dictionary: 
𝚽𝒌 ∈ ℤ𝑚 x 𝑝, 𝜱k 𝑷𝑘, : = 𝚿

Elementary dictionary: 𝚿 ∈ ℤ𝑟 x 𝑝

𝚿 =

𝑷𝒌

𝑷𝒒

Image: 𝒙 ∈ ℤ𝑛 x 𝑛

Image patches: 𝑷𝑘, 𝑷𝑞 ∈ 0,1 𝑛 x 𝑛, 𝑃𝑘 = 𝑟

𝒙 =

Linearized image: 𝒙′ ∈ ℤ𝑛
2
= ℤ𝑚



For INRC Members Only 10

Neural network structure
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Input image with patches

Patches -> Populations with population connectivity

Hierarchical 
population 
connectivity

0 1 2 3 4 5 6 7 8

0
1
2
3
4
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6
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8

Source 
populations

Destination 
populations

Connectivity matrix

𝑾𝑘,𝑞

𝒖𝑘
𝒃𝑘
𝒗𝑘
𝒔𝑘

Sharing of same sub-matrices reduces resource requirements!
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De-noising workload

∗ LCA
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Tutorial: LCA Module for Image De-Noising

*

* Other names and brands may be claimed as the property of others
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Questions?


