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Intel’s Neuromorphic Computing Lab (NCL) seeks proposals for research projects 

that will help advance neuromorphic technology to real-world state-of-the-art 

applications.  In this call, we are especially interested in foundational software 

contributions to the open source Lava framework as well as general algorithms and 

application demonstrations targeting Intel’s latest Loihi 2 chip.  We encourage all 

research findings to be published openly, with the goal of expanding the 

neuromorphic research community and accelerating the commercial adoption of 

neuromorphic technology. 

Funding is available for eligible and suitably compelling proposals for up to three 

years in duration. We anticipate additional corporate and government sponsors 

(TBA) to consider funding projects relevant for their application domains based on 

their independent assessment of proposals submitted to this RFP. 

 

Upcoming INRC Talks and Information Sessions:  

August 23, 2021 8:00-9:00am PDT. RFP Overview and Q&A. 

August 30, 2021 8:00-8:30am PDT. RFP Q&A. 

The August 23 session will be recorded and posted to the INRC website: 

http://neuromorphic.intel.com/. 

Please email inrc_interest@intel.com for access to the INRC website and 

to receive an online meeting invitation if you are not already an engaged 

INRC member.  

 

Proposal Submission Deadline (PIs):  

For proposals requesting funding beginning EOY 2021: Oct 1, 2021 

For all other proposals: We will consider access-only project proposals at 

any time. 

The project proposal document template is available on the INRC website. 

 

 

http://neuromorphic.intel.com/
mailto:inrc_interest@intel.com
https://intel-ncl.atlassian.net/wiki/download/attachments/44532116/INRC%20Proposal%20Template.docx?api=v2
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Overview 

In 2018, Intel’s Neuromorphic Computing Lab launched the Intel 

Neuromorphic Research Community (INRC). This collaborative 

research program is open to all academic, government, and 

industry research groups interested in exploring neuromorphic 

architectures for mainstream computing applications.  In 

support of INRC projects, Intel makes our Loihi research chip and 

software available to members so the capabilities and 

advantages of neuromorphic approaches can be evaluated in a 

rigorous manner with real-world measurements and 

demonstrations.  

In support of INRC research, Intel offers remote login access to 

Loihi systems and software development tools.  Intel also loans 

physical hardware systems to teams that require physical access 

for their proposed research. 

Intel hosts regular workshops and meetings open to INRC 

project participants to share results, discuss challenges, and 

provide hands-on training.  A weekly online forum features 

presentations from Intel and INRC members sharing progress 

and new developments. Semi-annual week-long workshops 

bring the community together to meet, share progress, and 

discuss future directions. The INRC Winter 2021 virtual 

workshop attracted over 400 registrants. 

The recent publication in Proceedings of the IEEE, “Advancing 

Neuromorphic Computing With Loihi: A Survey of Results and 

Outlook,” [1] summarizes the findings of the first three years of 

research with Loihi.  We expect new projects funded for ongoing 

research will incorporate these learnings and will focus on the 

most promising near-term directions for demonstrating 

commercial value. 

To encourage growth of the community and convergence at the 

software level, Intel is launching the Lava software framework as 

an open source project on GitHub with permissive licensing 

(mostly BSD-3 and LGPL-2.1).  Lava supports cross-platform 

execution, currently enabled on Loihi, Loihi-2, CPU, and GPU, 

and is available for porting to other platforms. Lava builds on a 

foundation of channel-based event-driven parallel processing 

with the goal of supporting a wide range of neuromorphic 

programming paradigms spanning deep learning to online 

learning to dynamics-based computing. Lava is modular, 

extensible, and incorporates most features from our previous 

NxSDK system.  Projects supported by this RFP are expected to 

use, and preferably contribute to, the Lava framework. 

Program Funding 

To date, INRC projects have collectively received several million 

USD in funding from Intel’s Corporate University Research Office 

(CUR) since 2018. Intel is now inviting proposals for 1- to 3-year 

projects that address one or more of the research vectors (RV) 

RV1 through RV5 outlined in this RFP.  Based on available 

budget, Intel expects typical grants to support one student or 

postdoc per project.  All proposals must justify the proposed 

budget in terms of the resources needed to carry out the 

proposed work. 

Intel may share relevant submitted proposals with corporate and 

government members of the INRC interested in sponsoring 

research relevant to their application interests.  To date three 

INRC projects have been funded by Accenture, and we anticipate 

broader support from corporate and government ecosystems in 

this round.  Any group may opt out of this broader consideration 

by indicating so in their proposal.  

Due to the limited grant funds available, we highly encourage 

researchers to leverage INRC support and membership to secure 

funding from other sources. Proposals outlining specific 

intentions to pursue such opportunities will be considered 

favorably. Feel free to submit requests for Intel letters of support 

at any time. 

 

Neuromorphic computing aims to apply insights from 

neuroscience to create a new class of computing technology that 

follows the form and function of biological neural networks. The 

goal is to discover a computer architecture that is inherently 

suited for the kinds of intelligent information processing that 

living brains effortlessly support. 

Interest in neuromorphic computing has intensified in recent 

years due to several developments. 

First, the success of artificial neural networks in the form of deep 

learning inspires confidence that biological insights can lead to 

great practical gains in computing and AI. While the 

breakthroughs coming from the deep learning approach are 

impressive and of tremendous practical value, deep learning 

models are facing limits in application scope because of their 

large data, power, and latency requirements. 

Second, the golden era of process scaling that provided 

conventional architectures with steady and massive gains in 

computing power has passed. While process scaling continues 

to shrink transistor sizes, conventional CPU and GPU 

architectures struggle to use ever-increasing transistor counts to 

deliver commensurate gains in application performance and 

energy efficiency. This motivates new architectural approaches 

that can deliver greater application-level performance using 

smaller but slower circuits. 

Finally, the pace of progress in neuroscience has accelerated 

dramatically in recent years, providing a wealth of new 

understanding and insights about the functioning of brains at the 

neuron level.  

Neuromorphic computing represents a fundamental re-thinking 

of computer architecture at the transistor level.  Compared to 

conventional architectures, it is massively parallel, with the 

fundamental unit of computation being a neuron with time-

dependent dynamics, compared to processors executing 

sequential instruction streams in conventional architectures.  

The computation in the brain and in most neuromorphic 

algorithms is an emergent phenomenon, the result of collective 

interactions between simple neural units. In contrast, 

computation in conventional CPU, GPU, and matrix arithmetic 

https://ieeexplore.ieee.org/document/9395703
https://ieeexplore.ieee.org/document/9395703
https://ieeexplore.ieee.org/document/9395703
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processors is a precisely sequenced procedure accessing state 

from a shared address space.  Communication in a neuromorphic 

architecture occurs in a peer-to-peer multicast fashion, with 

each neuron communicating scalar information to a diverse 

distribution of other neurons.  Communication patterns are 

asynchronous, event-based, and extremely sparse in both time 

and space. 

In a conventional processor, the top-level partitioning of the 

architecture between main memory and execution units leads to 

wide, vectorized datapaths that must stream data through the 

system at high bandwidth in order to achieve maximum 

efficiency.  In a neuromorphic architecture, neural network 

weights and parameters are always stationary while only sparse 

data samples travel through the silicon. Data representations are 

low precision, often one bit, and all state changes, including 

weight changes, are the result of interactions between locally 

available quantities.  Properties like noise, time-coding of 

information, and high-dimensional distributed data 

representations are used to achieve efficiency, robustness, and 

other surprising computational capabilities. 

Figure 1 contrasts modern parallel computing and 

neuromorphic computing from an abstract architectural 

perspective. From this abstract view, ignoring for now any 

biological motivation, one can appreciate the bottom-up 

promise of the technology: low latency as a result of sparse, 

unbatched, and event-based data processing; resource-efficient 

processing of time-varying sensor input as a result of recurrent 

state updated locally per neuron, highly efficient online 

adaptation and learning as a result of fully localized state 

changes, and overall very low power as a result of its pervasive 

sparsity and activity-gating feedback paths.  On the other hand, 

conventional parallel architectures supporting high precision 

matrix arithmetic are far better suited for offline training of 

differentiable and feed-forward models where sufficient pre-

collected data is available. 

As realized today by chips such as Intel’s Loihi series [2], 

neuromorphic technology can provide value for applications 

characterized by specific properties, shown in Box 1.  These 

loosely correspond to the same application needs that shaped 

brain evolution in nature.  Rapid response to arriving information 

allows mobile organisms to evade threats, capture prey, while 

Figure 1. SIMPLIFIED VIEW CONTRASTING TODAY'S PARALLEL COMPUTING AND NEUROMORPHIC 

COMPUTING, WITH AI PARADIGMS CORRESPONDING TO EACH ONE.  
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rapid online learning in response to minimal information allows 

organisms to respond to changing environmental conditions and 

outperform competition. Brain matter in nature is extremely 

expensive in both energy and material resources, just as we find 

in computing, so evolutionary pressures have led to designs that 

minimize resource consumption while maximizing behavioral 

objectives. 

For these applications, Loihi has shown gains in latency and 

energy compared to conventional solutions into the orders of 

magnitude. These results are surveyed in [1] and summarized in 

Figure 2.  Notable examples include constraint satisfaction, 

achieving up to 100,000x gains in energy-delay-product 

compared to conventional solutions. 

Conversely, applications that do not exhibit the properties listed 

in Box 1 are unlikely to run better on neuromorphic architectures 

compared to conventional ones, at least not over the time frame 

of research projects funded by this RFP. 

While a considerable body of results now exists pointing to the 

advantages of neuromorphic technology, the algorithmic 

methods and programming tools needed to realize this value for 

a wide range of real-world applications are still a severe 

limitation to progress.  To enable commercially relevant 

applications and attract increased investment to the field, more 

attention needs to be directed to the most pressing of these 

near-term challenges.  This is the objective of this RFP. 

 

 

Box 1. Application properties necessary for realizing gains on neuromorphic architectures compared to conventional computing 

architectures. 

• Streaming input data with temporal information structure (e.g. audio, video, or any signals changing on microsecond-

to-second time scales), especially when the data events of interest arrive infrequently and unpredictably. 

• A need for fast pattern matching, search, and optimization. Neuromorphic architectures fundamentally implement a 

neural network computational model, which have a large body of literature supporting sub-symbolic processing and 

pattern matching in high-dimensional spaces, as well as optimizing network-defined energy functions through 

emergent neural dynamics. 

• A need for adaptation, fine-tuning, or associative learning in response to arriving information.  

• A need for low latency responses, e.g. as in closed-loop control applications.  The time and resource cost of batching 

and vectorization, necessary for efficient use of conventional architectures, may be unacceptable. 

• Power constrained. Often conventional architectures can achieve low latency at the expense of high power 

consumption. For suitable applications, neuromorphic architectures support both low latency and low power operation. 

• Relatively small problem scales or else cost insensitive.  Compared to conventional computing systems, 

neuromorphic systems contain a relatively small amount of aggregate memory, the result of its compute/memory-

integrated architecture.  While conventional architectures can scale to larger workloads by using large quantities of 

DRAM, neuromorphic architectures can only scale by instantiating more processing chips. 

Figure 2. LOIHI RESULTS 

SHOWING RELATIVE GAINS IN 

SOLUTION ENERGY AND 

LATENCY VERSUS REFERENCE 

ARCHITECTURES. SEE (DAVIES 

ET AL 2021) FOR DETAILS.  
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Figure 3 defines the complete scope of neuromorphic 

computing research vectors. Although Intel pursues all of these 

vectors, we generally only consider funding external groups in 

vectors one through five, with an emphasis on vectors two 

through three. 

Our interest at the present time is to focus funding in the most 

promising directions for near-term commercial value, detailed in 

the sections that follow. Intel funding will be directed to projects 

that align well with our prioritization or else present a strong case 

for near-term commercial relevance. 

Proposals seeking funding should target Intel Loihi hardware 

platforms for final software, algorithm, and application 

demonstrations. This allows results to be rigorously quantified 

across all relevant metrics: correctness, precision/accuracy, 

speed of execution, power consumption, and resource 

utilization. Technical objectives should be defined in terms of 

those metrics such that results can be quantitatively assessed. 

Groups seeking funding must articulate an informed, forward-

looking orientation. Proposals should reflect a strong 

understanding of results obtained to date by the INRC or with 

other neuromorphic platforms, e.g. as documented in (Davies et 

al. 2021). Projects should not assume software programming or 

training capabilities that do not yet exist, or else they should 

present a credible plan for developing those tools in Lava and 

making them available to other INRC members. 

Furthermore, projects should anticipate the future direction of 

neuromorphic hardware architecture evolution, e.g. as will be 

imminently available in Loihi 2. A few of these new directions are 

provided in Box 2. 

Our broader objective is to accelerate progress in a collaborative 

fashion, so we wish to see functional code contributed to the 

Lava GitHub with permissive licensing terms. This allows others 

to replicate and advance on progress. 

 

The long-term adoption of neuromorphic technology depends 

on establishing sound theoretical foundations that support 

robust algorithms and applications. As a new computational 

paradigm differing from conventional computer architectures in 

fundamental ways, neuromorphic computing currently lacks 

unifying theoretical frameworks such as the Turing Model, which 

leads to a highly fragmented exploration space. 

Past INRC RFPs have highlighted the need for theoretical work in 

the areas of computational complexity frameworks, 

characterizations of neural dynamics, and unified engineering 

figures of merit.  While these areas remain important for 

progress in the field, they are not areas we expect to support with 

Intel funding at this time. 

Instead, we seek to fund areas of theoretical research focused on 

removing practical roadblocks to neuromorphic technology 

deployment.  These include: 

• Stability guarantees for (spiking) neural network adaptive 

control algorithms. 

• Frameworks that provide principled motivation for 

different information coding strategies based on 

application objectives. For example, when to use temporal 

coding, phase coding, rate coding, population coding, plus 

generalizations to other coding strategies such as sigma-

delta with graded spikes. 

• Neuroscience basis for stochastic spiking neural networks 

(SNNs). Adding noise to SNNs has provided some of the 

most compelling computational results on Loihi to date. 

Establishing a linkage between the mathematical 

formulation of these models [3] and more bio-plausible 

neural circuits could provide insights for how to enhance 

these networks (e.g. with plasticity) and how to integrate 

them with more conventional networks. 

• Neuroscience foundation of vector symbolic architectures 

[4] and linkage to dynamic neural fields [5].  

Figure 3. NEUROMORPHIC RESEARCH VECTORS. BLUE VECTORS FALL WITHIN THE DOMAIN OF INRC-

FUNDED RESEARCH. RED ARE OUT OF SCOPE.  
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Central to the advancement of neuromorphic computing is the 

development of algorithms that leverage the novel features of 

neuromorphic architectures, while satisfying their bio-inspired 

hardware constraints. These are algorithms that utilize sparsity 

of connectivity, communication, and activity. They should 

include dynamically evolving state within each neuron that is 

excited by inputs and inhibited through feedback loops.  

Learning algorithms can only use state variables that are locally 

available at each synapse and neuron.  Novel neuro-inspired 

features such as stochasticity, structural plasticity, event-driven 

computation, and temporal information coding can also provide 

unique gains on neuromorphic architectures. 

Algorithms proposals should fully consider all recent learnings 

[1] and should include a plan for rigorous benchmarking to 

current state-of-the-art conventional solutions. The value of the 

proposed algorithms should be motivated in the context of a 

specific application and associated real world constraints, 

informed by the challenges and opportunities facing 

neuromorphic technology deployment. 

RV2 projects should advance beyond theory and modeled 

examples to provide generally usable software modules in Lava 

targeting Loihi and other future neuromorphic platforms. Others 

should be able to easily apply results to their own problems, 

preferably over a range of different application domains. 

The following sub-vectors are of particular interest. 

Compared to the simple stateless neuron models of deep 

learning (e.g., ReLU), biologically inspired neuron models include 

time-varying state variables.  In neuromorphic hardware, these 

offer several computational advantages: 

• They introduce time-varying behavior into a network that 

can otherwise only be achieved through iterative 

evaluation of the entire network. 

• By combining a diversity of such neurons in a network, each 

evolving its state variables independently of the others 

without the need for network-wide communication, the 

network can transform inputs to a sparser form with a 

richer set of time-varying basis functions.  (For example, an 

array of resonate-and-fire neurons with different intrinsic 

frequencies can approximate the Short-Time Fourier 

Transform.)  This can reduce network size and parameter 

counts compared to homogenous networks. 

• Stateful neurons can predict future inputs by using their 

stored state, allowing them to communicate only 

unanticipated changes. This can lead to sparser activity (e.g. 

CUBA LIF and Sigma-Delta neurons).  

Loihi implements a single generalized LIF model that can be 

parameterized and aggregated into dendritic tree-like structures 

as a model of complex neurons.  We are now interested in 

supporting research into a broader class of neuron models that 

further generalize Loihi’s (See Box 2.)  These models can have 

nearly arbitrary internal dynamics and support both spike-based 

communication and continuous transmission of graded 

information.  The former sparsifies long-range communication 

with event-based messages triggered by some spike condition; 

the latter provides high-precision computation within a local 

cluster of neurons, where the cost of communication and fanout 

are low. 

Potential neuron models of interest include oscillatory models 

(resonate-and-fire, Hopf oscillators), sigma-delta coding models, 

stochastic models, and hybrid combinations of stateless 

nonlinear dendritic structures with stateful soma units. 

Generally, we see near-term promise of this algorithmic 

approach for demonstrating more compact, intelligent, and 

 

Box 2. Future directions of Intel’s neuromorphic hardware architecture. 

• Graded spikes. Many traditional SNN chips, including Loihi, only support binary-valued spike messages. While binary 

spikes can perform a remarkable amount of computation (as best demonstrated by the brain), in digital hardware spikes 

can be easily generalized to carry integer-valued payloads with little extra cost in either performance or energy.  Several 

recent neuromorphic chips support such graded spikes, and future Intel chips will too. These generalized spike 

messages support event-based messaging, preserving the desirable sparse and time-coded communication properties 

of SNNs, while also providing greater numerical precision. 

• More general neuron models. Loihi supports a generalized leaky-integrate-and-fire (LIF) spiking neuron model with 

the ability to aggregate neural units into dendritic trees communicating graded dynamic state variables towards the 

soma (root) compartment. Intel’s future neuromorphic chips will generalize this further, with fully programmable 

neuron models that allow each compartment to state variable changes as nearly arbitrary difference equations with 

configurable spike conditions and state machines. A greatly expanded set of neuron models will be supported, including 

adaptive threshold LIF, Resonate-and-Fire, Hopf resonators, sigma-delta coding, and many others. 

• Three-factor learning rules. Loihi primarily supports two-factor learning rules (involving pre- and post-synaptic traces), 

with a third modulatory term set in a diffuse manner from graded “reward” broadcasts. Future chips will support more 

targeted and localized third factors in learning rules, for example those mapped to specific postsynaptic neurons as 

projected error signals. Neuron thresholds and other parameters will also support more flexible programmed plasticity. 
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efficient nonlinear signal processing solutions, e.g., for audio 

processing. 

The best quantified Loihi results come from networks that 

optimize well-defined objectives using attractor and other 

network-level dynamics.  Examples include Lasso regression, 

constraint satisfaction, and similarity search, with other 

promising generalizations on the horizon such as Subspace 

Locally Competitive Algorithm [6], Minimax optimization [7], 

genetic algorithms [8] and probabilistic inference [9] [10] [11].   

One pressing challenge in this domain is to bridge between 

continuous, time-varying input signals and the episodic nature 

of current neuromorphic solvers.  For example, while Loihi can 

solve Lasso problems with incredible speed and efficiency using 

SNN dynamics, solutions can be brittle, varying greatly from one 

input sample to the next (perhaps only due to noise), which limits 

its value in a real-time setting.  However, as standalone offline 

solver, its runtime is dominated by I/O. 

Another important challenge involves hierarchically composing 

such optimizing networks to solve larger problems or to solve 

the same problems with higher precision.  Multiscale modeling 

techniques from conventional applied math may be of value 

here, in addition to novel insights from neuroscience. 

In the neuromorphic research field at large, much attention and 

funding has been directed to learning algorithms that 

approximate backpropagation (or gradient descent in parameter 

space) with online learning rules that respect locality and other 

neuromorphic architectural constraints [12] [13] [14] [15]. 

Despite encouraging progress, major hurdles remain to be 

resolved before these approaches can yield practical value.  

While these algorithms can, in their execution, operate online, 

they rely on unrealistic assumptions about the statistics of real-

world data (namely independent identically distributed (iid) 

samples). Furthermore, merely operating online doesn’t improve 

the data efficiency of backprop, which is a fundamental 

challenge with this general category of learning for online/edge 

applications. 

We are interested in supporting novel learning algorithms that 

comprehensively address the requirements for online 

deployment. (1) continuous/lifelong learning approaches that 

naturally avoid or manage catastrophic forgetting with extra 

readily integrated ingredients; (2) more data efficient learning 

algorithms that achieve excellent data efficiency by leveraging 

pre-training, hierarchy, causality, or priors in a principled 

manner; and (3) algorithms that utilize recurrent network 

structures and dynamics in order to deliver maximum execution 

efficiency on neuromorphic hardware. 

Several example approaches of interest are described below. 

On-chip few-shot transfer learning. Few-shot on-chip learning 

(last or last few layers) on top of pre-trained feature extraction 

layers needs more attention. E. Neftci’s Surrogate-gradient 

Online Error-triggered Learning (SEOL) work is a good starting 

point [16]. There is scope for work on improving the on-chip 

learning behavior. Offline training with Model Agnostic Meta 

Learning (MAML) for better feature extraction layers which are 

better suited for few-shot adaptation for the task at hand needs 

investigation for sparse-event based computation. MAML is an 

established idea for standard ANNs, but adaptation to spike/ 

event-based computation has not yet been pursued. 

Contrastive or surprise-driven learning. In real world scenario, 

it is difficult to find good labelled data available. A form of 

continual unsupervised/semi-supervised learning learns with 

pseudo-labels continuously and typically results in general 

features agnostic to the final task, therefore, the resulting 

features are more generalizable. Tasks may be formulated to 

contrast between similar and dissimilar instances leading to 

good latent representations in a semi-supervised manner. 

Robust continuous learning may be achieved by contrasting the 

network’s internal prediction of activity and actual activity (a 

form of surprise). Examples include CLAPP [17], Contrastive 

Predictive Coding [18], and MoCo-v2 [19]. 

Stochastic learning with bounded resources to avoid 

catastrophic forgetting [20] [21]. These approaches may use 

multi-state synapses and their internal dynamics [22] [23] [24] 

[25], complex synapses to extend memory lifetime with optimal 

synaptic model [26], or replay for pinning significant memories 

[27] [28] and use them for key retrieval of in between memories 

[29]. The concepts of bounded resources and multi state 

synapses align well with the features and constraints of 

neuromorphic hardware. 

Hierarchical Reinforcement Learning (HRL) for reducing state 

space dimensionality and learning complexity [30] [31] [32] [33] 

learning the hierarchy structure with solving the HRL problem 

[34] and introducing transfer learning to speed learning of 

novel/similar complex structured memories. 

Shallow associative learning utilizing high dimensional 

attractor dynamics in conjunction with neuro- or synapto-

genesis, e.g. olfaction-inspired approaches [35]. 

Causal representation learning has emerged at the intersection 

of DL and probabilistic graphical models to learn causal 

representations from few samples that are robust to distribution 

changes and thus generalize well [36]. This is achieved by going 

beyond learning mere correlations from iid samples towards 

incorporating counterfactual queries or active interventions 

while sampling to learn factorized models. Through their 

modularity, such models promise local and efficient updates of 

sparse causal relationships as opposed to distributed updates of 

acausal models and thus offer a path to robust continual online 

learning. While the mapping of such graphical models and 

associated learning rules to neuromorphic HW is not completely 

clear yet, these models capture some of the fundamental 

characteristics of spiking neural networks like causal event-

based operation, sparsity, active sensing, and embodying 

probability distributions with stochastic spiking dynamics [9]. 

 

Stochastic spiking neural networks have been used to represent 

Bayesian or more general graphical models [9] and are known to 

solve a wide range of hard problems such as the computation of 
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marginal probabilities, or maximum likelihood [10]. These 

models have for instance been applied to solving constraint 

satisfaction problems with SNNs [37] and could offer one 

possible realization of causal graphical models for efficient 

continual learning. Benchmarked recently on Loihi hardware, 

such stochastic spiking networks are now demonstrating 

significant outperformance compared to classical approaches on 

conventional hardware architectures [1].  We wish to encourage 

greater focus on this class of networks.  We see an opportunity 

for rapid progress on several fronts: (1) maturing previously 

proposed theory and fully demonstrating these frameworks on 

neuromorphic hardware, (2) combining such stochastic networks 

with more standard components (e.g. offline-trained DNNs and 

associative memories), and (3) algorithmically extending these 

frameworks to related areas of high value such as probabilistic 

inference and model predictive control.  

Vector Symbolic Architectures, also known as Hyperdimensional 

Computing algorithms, are attracting increasing interest [4] and 

advancing with compelling new algorithms such as the resonator 

network [38].  While promising, VSA application demonstrations 

to date remain small scale and future complex scaled up VSA 

algorithms utilizing resonator-like elements face significant 

compute challenges due to their heavy use of high-dimensional 

associative memories and attractor dynamics. 

Research into VSA frameworks that bring sparsity to the 

connectivity and activity of VSAs may enable this class of 

algorithms to be efficiently mapped to neuromorphic hardware 

and far outperform conventional dense-vector approaches.  

Insofar as the brain implements such hyperdimensional vector 

symbolic computations, we can be confident that a highly 

efficient, neuro-inspired sparse implementation exists.  

Promising progress on sparse binding has already been 

demonstrated [21] and we encourage greater attention to this 

promising new direction for neuromorphic computing. 

While a wealth of backprop-style offline training tools for spiking 

neural networks have been demonstrated over the past few 

years, severe computational constraints limit them all to small-

scale applications. Scaling up computational resources quickly 

faces diminishing returns. Therefore innovations in offline 

optimization methods are needed to successfully train larger 

and more complex neuromorphic networks.  Innovations might 

include hybrid training approaches (e.g. ANN conversion-based 

pre-training followed by direct fine-tuning), Hessian-based 

methods, novel neuron models and features to ease training, 

among others. 

Meanwhile, we see a clear fundamental limit to the value of 

backprop-based offline optimization for neuromorphic 

networks, which are inherently non-differentiable.  Following 

nature’s lead, we see a promising future for evolutionary 

methods for long-term neuromorphic algorithm discovery and 

optimization.  These approaches are currently at a very early 

stage, showing even less success so far in scaling compared to 

backpropagation approaches. We are interested in supporting 

new ideas and approaches that can credibly promise significant 

gains. 

We seek commercially relevant application demonstrations at 

the intersection of research and today’s best engineering 

solutions. Compared to past application demonstrations with 

Loihi, we now intend to raise the bar of anticipated impact. This 

narrows the scope of candidate opportunities. Over the long 

term we see a vast domain of applications for neuromorphic 

devices, but in the near term, we see a more limited list of 

candidates that are commercially relevant yet viable using 

today’s neuromorphic hardware and known algorithmic 

methods. 

To substantiate commercial relevance, we prefer application 

projects that include participation, support, or co-investment 

from industry or government organizations.  For example, this 

could be a corporate advisor, use of data from an end customer, 

or integration into a commercial system platform. For suitably 

compelling proposals, Intel is open to partnering and 

contributing engineering resources if doing so will support a 

successful outcome. 

The technical suitability of application proposals will be 

evaluated according to the criteria included in the INRC project 

proposal template, which is included as Appendix 2 here.  A 

comprehensive, convincing response to these questions is the 

single most important factor in our evaluation of application 

proposals. The algorithmic risk in the proposed solution should 

be relatively low; solutions should use algorithmic methods that 

have been previously published and preferably already validated 

on neuromorphic hardware. 

All application proposals should clearly describe the solution’s 

value in relation to limitations of current solutions, and how 

specifically the neuromorphic approach is uniquely capable of 

outperforming.  For projects in this RV, domain expertise is as 

important if not more important than a background in 

neuromorphic research.  Proposals should articulate a strong 

case for the commercial viability of a successful outcome, based 

on measurable and significant advances the project will 

demonstrate over the current state-of-the-art. 

Some promising categories of application demonstrations are 

listed below. 

Audio processing, especially applications that need to operate 

continuously in an always-on fashion at low power levels and 

where a fast response and online adaptation is needed, e.g. 

wake-on-voice, dynamic noise suppression, automatic speech 

recognition, sound detection and localization, speaker 

identification, and blind source separation. 

Signal processing for security, failure detection, and sensor 

networks. Examples range from radar, sonar, biometric, and 

turbine monitoring to cybersecurity intrusion detection to 

sensor network processing for earthquake prediction and oil 

field analysis. 

Human-machine interfacing: gesture recognition for cursor 

control or sign language interpretation, gaze tracking, speech 
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processing, tactile/haptic sensor processing. Brain-computer 

interfaces (EEG, EMG, direct nerve/neural probes) that 

demonstrate real-world advantages for gaming and people with 

disabilities. Additional value may come from applying 

neuromorphic compute to wireless interfaces in this domain. 

Visual-inertial odometry and SLAM, in particular projects that 

build on past SLAM demonstrations with Loihi [39] [40] to 

credibly advance state-of-the-art odometry, localization, and 

mapping capabilities in edge devices such as Intel’s RealSense 

cameras. 

SWaP-constrained visual inference, learning, and control, e.g. 

for satellites, drones/UAVs, and robots, calling for fast, online 

adaptation to unpredictable environments and new object 

classes. Note that in the near term, the complexity of these visual 

inference problems is limited by neuromorphic system capacity. 

Therefore, straightforward DNN translation methods are 

inadequate, and we will be looking for projects that apply the 

latest algorithmic insights for maximizing resource efficiency 

(e.g. novel neuron models and sparse networks) while 

minimizing energy/latency (e.g. by leveraging attractor 

dynamics).  

Optimization for real-time decision making and control 

applications. Lava libraries will be available soon enabling Loihi 

platforms to solve a range of constrained optimization problems 

10-100x faster and >1000x more efficiently than conventional 

methods. These include constraint satisfaction, mixed-integer 

linear programming, quadratic programming, and QUBO.   We 

are interested in identifying applications where these gains 

provide the greatest commercial value while satisfying the 

limitations of neuromorphic solutions (namely low precision 

variables, quasi-static problem structure, and limited I/O 

bandwidth). 

Despite many recent demonstrations of compelling 

neuromorphic capabilities, the level of overall software maturity 

in the field remains low.  Code sharing between groups is almost 

nonexistent, and published examples generally are difficult if not 

impossible to replicate by others. There are very few examples 

of composability, abstraction, and modularity in the algorithms 

studied and published.  While some promising frameworks have 

open-source code, prohibitive licensing terms limit widespread 

adoption and community-wide contribution. 

Intel is attempting to improve this area in a variety of ways, such 

as by providing the Nx Software Development Kit free for INRC 

use, hosting a GitHub space to share INRC project code, funding 

promising software toolchains such as Nengo, and now 

launching the Lava framework that we hope will encourage 

convergence on a single cross-platform, extensible, and open 

neuromorphic software framework. (See Box 3 “What is Lava?”)   

With this RFP, we hope to focus attention and funding across all 

levels of a single unified software framework to help resolve 

these challenges.  The foundational SDK ingredients that Intel 

has already released for open-source development support 

Intel’s Loihi and future neuromorphic chips, as well as execution 

and offline training on CPU/GPU, and may be ported to other 

platforms. Building on this foundation, we hope to encourage 

developers with diverse backgrounds and interests to help 

improve and extend the Lava framework. By bringing new ideas 

 

Box 3. What is Lava? 

• Magma. At its foundation, replacing the previous “NxSDK”, is Intel’s next generation SDK that provides a low-level 

interface for mapping and executing neural network models and sequential processes (snips) to neuromorphic 

hardware.  This layer now includes cross-platform execution support so applications can be developed in simulation 

on CPU/GPUs before being deployed to Loihi (or other) neuromorphic platforms. This layer also includes a profiler that 

can measure or estimate performance and energy consumption across the targeted back-end platforms. 

• Channel-based asynchronous message passing. Lava specifies, compiles, and executes a collection of processes 

mapped to a heterogenous execution platform including both conventional and neuromorphic components. Unifying 

all inter-process communication is an event-based message passing framework sometimes referred to as 

Communicating Sequential Processes or the Actor model. Messages in Lava vary in granularity from single-bit spikes 

to buffered packets with arbitrary payloads. 

• Offline training. Lava supports tools such as SLAYER [44] so a range of different event-driven neural networks (LIF 

SNNs, RF SNNs, SDNNs, and others) can be trained offline with backpropagation and integrated with other modules 

specified in Lava. 

• Integration with third party frameworks. Lava is fully extensible, supporting interfaces to third party frameworks such 

as ROS, YARP, TensorFlow, and hopefully many more in the future, providing a truly heterogeneous execution 

environment.  

• Python interfaces. For ease of adoption, all libraries and features in Lava are exposed through Python, with optimized 

libraries and C/C++/CUDA/OpenCL code under the hood where necessary to provide excellent performance. 

• An open-source framework with permissive licensing. Lava is hosted publicly on GitHub and runs on CPU/GPU 

platforms without requiring any legal agreement with Intel. The software is available for free use under BSD-3 and 

LGPL-2.1 licensing. 



Case Study | Title 

 

 

Revision 3.0 © Intel Corporation  10 

 

and perspectives to the software challenges, we see 

opportunities for great gains in many areas that are bottlenecks 

to progress today: developer productivity, offline training 

speeds, module composability, hardware mapping speed and 

optimality, and libraries for powerful features like structural 

plasticity and evolutionary optimization. 

Beyond the immediate priority of building out and optimizing the 

central capabilities of the Lava framework, we see several long-

term compelling directions for Lava development, listed below. 

We would welcome the academic community to take the lead in 

these areas, with the assistance of Intel funding and partnership. 

Development of a Domain-Specific Language (DSL) spanning 

all levels of the underlying heterogeneous compute platform 

and abstractions. The goal would be to unify these elements with 

a common asynchronous message-passing language following 

the model of Communicating Sequential Processes [41] and 

Actor-based languages (e.g. Go, Akka, Lingua Franca [42]) yet 

incorporating the unique properties of neuromorphic computing 

that don’t conform to a von Neumann programming model such 

as collective dynamics, differentiable programming, 

stochasticity, and plasticity.  

Event-driven Actor Virtual Machine (AVM) for CPU-based 

execution. The current Lava backend simulator for CPU/GPU 

leverages TensorFlow, which is not optimal for executing the 

sparse and event-driven applications for which Lava is intended. 

It also fails to unify the execution of both neural processes and 

conventional sequential ones in a single runtime system. See 

FNS [43] for a recent SNN-specific simulator example. 

Formal specification and verification of Lava processes 

spanning structural, functional, and behavioral levels of 

abstraction.  A promising approach for improving the 

explainability and composability of certain classes of 

neuromorphic networks is to rigorously derive emergent 

properties of their dynamics, e.g. attractor states and stability 

conditions, given a specification of their structure and 

parameters. Such capabilities would abstract away low-level 

details of the networks’ behavior, such as precise trajectories in 

phase space, while providing practical insights to the application 

developer. Such neuromorphic network verification capabilities 

would require new mathematical analysis tools going beyond 

the discrete math and logical theorem provers of conventional 

formal software verification. 

Over the past several years, event-based vision sensing 

technology has seemingly matured with the advent of 

commercially available sensors and large investments from 

numerous industry and government organizations. 

Neuromorphic processing of event-based sensor output 

promises many advantages over conventional architectures, yet 

algorithmic and hardware scaling challenges limit the near-term 

commercial viability of this combination of technologies.  We 

view some of these challenges as fundamental, exacerbated by 

the pixel-level granularity of features produced by today’s event-

based sensors. 

We are interested in supporting fundamental research that 

addresses these pain points: (1) application-driven modeling of 

future sensor architectures that tightly integrate novel 

photodiode sampling circuits with neuromorphic processing, 

both near and far; (2) novel spatiotemporal filtering techniques 

prototyped on Loihi and/or FPGAs that extract meaningful 

features with a minimum of parameters and compute cost; (3) 

feedback-driven attention and active sensing mechanisms that 

improve the speed, efficiency, and resource needs of visual 

inference and learning. 

Beyond vision sensors, Intel may consider funding and offering 

in-kind support for interface and hardware engineering projects 

demonstrating the value of novel event-based sensor and 

actuator technologies, such as electronic skins, cochlea-inspired 

audio processing, muscle-like actuators, and wireless interfaces. 

Intel’s goals for the INRC relate to accelerating neuromorphic 

research progress and enabling the commercial adoption of 

future neuromorphic technology: 

• Identify, develop, and characterize algorithms that exploit 

the novel properties of event-based/spiking neuromorphic 

hardware architectures to deliver orders of magnitude 

gains in latency, energy efficiency, and data efficiency 

compared to conventional solutions. 

• Guide the iterative development of neuromorphic, non-

Von Neumann architectures with the algorithmic and 

architectural insights from the above. 

• Develop an open, cross-platform software framework that 

aligns and grows the neuromorphic research ecosystem, 

laying the groundwork for a future commercial developer 

ecosystem. 

• Prototype real-world applications with Lava and Intel’s 

neuromorphic research silicon to identify the areas where 

neuromorphic technology might deliver the greatest 

commercial value. 

In its funding decisions, Intel will prefer project proposals that 

align well with these goals. 

The process for formally joining the Intel Neuromorphic 

Research Community is outlined below. 

1) Complete and submit one or more INRC project proposals 

2) An INRC participation agreement needs to be executed 

between Intel and the institutions affiliated with all team 

members, once the proposal is accepted.  An authorized 

legal representative from each institution needs to sign this 

agreement. This is typically not the PI.  Specific terms of the 

agreement may be negotiated in some cases, when 

necessary. PIs are responsible for ensuring all project team 

members are aware of applicable terms of the INRC 

participation agreement. 
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3) Once a project has the green light to proceed, members of 

the project formally become INRC participants.  This 

authorizes access to the following services: 

a. Engaged member sections of the INRC website, 

including detailed Loihi documentation and content 

contributed by other INRC members. 

b. Remote access to Loihi via our Neuromorphic 

Research Cloud (NRC) system. 

c. Access to the Loihi-proprietary portions of the Lava 

SDK (“Magma”), necessary for running Lava 

applications on Loihi hardware platforms. 

d. Physical access to loaned Loihi hardware systems (as 

needed/approved) 

4) PIs or their delegate should create a project page in the 

“Projects and Results” space of the INRC website, which 

provides a single location for maintaining the team’s up-to-

date member list, results, and other resources of general 

INRC interest. 

5) Conduct your research project. 

6) Share progress, results, and demonstrations in periodic 

INRC online forums and face-to-face workshops open to all 

INRC members. 

7) At the conclusion of the project, present a final 

report/demo, publish results, and contribute as much 

software as possible to the Lava GitHub site. 

Having successfully completed at least one INRC project, you 

remain an INRC member but, due to capacity constraints, you 

may lose access to Loihi/NRC resources unless approved for 

another project. 

Additional information describing the engagement process are 

available on the INRC website. Further guidance will be provided 

upon receipt of a project proposal.  Feel free to send questions 

at any time to inrc_interest@intel.com. 

We welcome groups of all types and locations to submit research 

proposals and engage in the community, subject only to U.S. 

export control laws. 

Intel research grants are only offered to academic research 

groups. 

Along with this RFP, we are providing an INRC Project Proposal 

Template document that lists all information and 

documentation required of each respondent.  Please refer to that 

document for detailed guidance on what information to include 

in your INRC project proposal, while preserving the template 

structure.  A proposal may be rejected if it does not include the 

required information and documents. 

Some recommendations: 

• Delete all commentary and guidance text from the 

template document. 

• Strive for brevity. 

• Feel free to submit more than one proposal. 

• Keep the scope of each project narrowly defined and 

limited to a single research vector. 

Please note that we are unable to receive proposals that are 

provided under an obligation of confidentiality. Proposals 

should therefore include only public information. If you 

represent a corporate entity with proprietary IP considerations, 

please contact us prior to submitting a proposal. 

Once your INRC research project is approved and underway, we 

would like to receive quarterly updates on your progress and 

also notification of any work published as a result of this 

research.  If you receive Intel funding, we will expect progress 

updates at least once per quarter, with at least one per year at an 

INRC face-to-face workshop. 

Progress updates will generally be in the form of short ~30 

minute presentations, open to all other INRC participants.  Live 

demonstrations of results using Loihi, emulation, or simulation 

when possible will be highly appreciated. 

Intel supports and encourages publishing results in public, peer-

reviewed forums.  We will do our best to support live 

demonstrations and independently hosted hands-on workshops 

using Loihi hardware systems, subject to U.S. export control, 

security, availability, and other constraints. 

 

  

http://neuromorphic.intel.com/
mailto:inrc_interest@intel.com
https://intel-ncl.atlassian.net/wiki/download/attachments/44532116/INRC%20Proposal%20Template.docx?api=v2
https://intel-ncl.atlassian.net/wiki/download/attachments/44532116/INRC%20Proposal%20Template.docx?api=v2
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Intel offers a wide variety of Loihi-based neuromorphic 

systems and software for you to utilize in your research.

 

Our primary means 

of providing you 

access to Loihi is 

through our 

Neuromorphic 

Research Cloud. 

Approved projects will be given their own virtual machine on 

the cloud with SLURM access to either our standalone 32-chip 

Nahuku system or partitions of multiple Nahuku-32 boards 

within our large-scale Pohoiki Springs system. We will be 

adding single-chip Loihi 2 systems to the NRC soon, with multi-

chip systems following in the coming months. 
 

For some projects, the NRC may 

not work for you. Instead, you 

may need local access to our 

Nahuku-32 platform. While we 

have a limited supply, if you 

provide clear reasoning within 

your proposal for one, we can 

loan these systems for up to 3-6 

months at a time. We have a 

smaller variant as well (Nahuku 

08) which can be loaned for longer periods. 

Similar, but more compact, Loihi 2 systems will be available 

for local lab use in 2022. 
 

Another system available 

for loan is our Kapoho Bay 

USB form factor. It supports 

up to 2 Loihi Chips and is 

compatible with Ubuntu 

16.04 and 18.04. Great for portable projects and equipped with 

GPIO pins for DVS camera input, this device can be loaned to 

project teams for up to 1 year. 

Lava is freely available on GitHub for all to encourage 

community growth and convergence. See Box 3 for its major 

defining ingredients. Lava replaces and expands on our 

previous NxSDK software that was only available to engaged 

INRC members. The lowest level components necessary for 

deploying applications to Loihi hardware systems remain 

accessible only to engaged INRC members, at no cost. 

In order of importance, the evaluation criteria for this solicitation 

are as follows: 

1.  Potential contribution and relevance to Intel and the 

broader industry: The proposed research should directly 

support a technology solution that addresses the RVs outlined 

above, leading to technological advances with the potential for 

ongoing technology transfer in collaboration with Intel and the 

broader industry.  

2.  Technical innovation: Proposed solutions of interest should 

clearly push the boundaries of technical innovation and 

advancement. Research that is not of interest in this program 

include incremental advancements to state-of-the-art and 

current design practices. Feasibility of new 

algorithms/techniques should be demonstrated through 

SW/HW implementations. Projects seeking funding should target 

Loihi hardware platforms and the Lava software framework to 

enable algorithmic capabilities and application proof of concept 

demonstrators that others can build on. Technical objectives 

should be defined in terms of quantitative target metrics 

(precision/accuracy, speed of execution, power consumption, 

and resource utilization) as detailed in “Technical Objectives of 

Research.” Funded projects will be enabled with remote access to 

Loihi and future neuromorphic hardware platforms via our 

Neuromorphic Research Cloud (NRC) system and limited access to 

physical loaned systems as needed/approved. See sections on 

Engagement Process and Loihi Hardware and SDK for more 

information.  

3.  Clarity of overall objectives, intermediate milestones and 

success criteria: The proposed Research Plan should clearly 

convey that the PIs have the knowledge and capability to achieve 

the stated research goals. It is understood that any research 

program will have uncertainties and unanswered questions at 

the proposal stage, but a clear path forward in key challenge 

areas must be identified and justified. Teams are expected to 

demonstrate progress toward project goals at quarterly 

milestones and monthly project status updates. The proposal 

should explicitly point out which RV is being addressed, the 

synergy among them if more than one RV, the plan and 

milestones towards building research prototypes, plan for 

ongoing technology transfers, and the anticipated proof of 

concept outcome. The technical suitability of proposals to RV2: 
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Algorithms and RV3: Systems Applications will be evaluated 

according to the criteria included in the INRC project proposal 

template, as included for reference in Appendix 1 and Appendix 

2, respectively. Strength of project management will also be 

considered. 

4.  Qualification of participating researchers: The extent to 

which expertise and prior experience bear on the problem at 

hand. Please elaborate on track records of building research 

prototypes (e.g., open-source research code/collaterals on 

GitHub) and resulting publications from past relevant projects. 

5.  Cost effectiveness and cost realism: The extent to which the 

proposed work is both feasible and impactful within the 

proposed resource levels will be examined.  

6.  Potential for co-funding: Opportunity for closely synergistic 

matching grants and co-funding with other funding entities, such 

as SRC, NSF, DARPA, NSERC, etc. will be given significant 

consideration. 

7.  Potential for broader impact: Intel supports the 

advancement of computing education and diverse participation 

in STEM.  Significant consideration will be given to proposals in 

which the outcome of the research can influence the 

development of new curriculum initiatives impacting 

undergraduate or graduate education at the respective 

universities (e.g., exposure to latest industry technologies/tools 

in classroom setting).  Proposals are encouraged to elaborate on 

how the proposed work is anticipated to impact student 

education on campus and/or the broader academic community.  

Intel Note: 

 As an industry leader, Intel pushes the boundaries of technology 

to make amazing experiences possible for every person on earth. 

From powering the latest devices and the cloud you depend on 

to driving policy, diversity, sustainability, and education, we 

create value for our stockholders, customers, and society. Intel 

expects suppliers in our supply chain to be strong partners in 

making Intel successful through support of Intel's goals and 

commitments to diversity, sustainability, and education. 

In light of Intel’s strong commitment to diversity and creating an 

inclusive environment, in your proposal please address: (a) your 

organization’s commitment to diversity and inclusion with 

respect to race, national origin, gender, veterans, individuals with 

diverse abilities and LGBTQ, (b) a summary of your performance 

in this area and any initiatives you are pursuing, and (c) the 

diverse team you propose for this project, including leadership, 

support, and any subcontracting you propose (such as to 

minority- or women-owned businesses). 

This solicitation affords proposers the option of submitting 

proposals for the award of a grant or gift, a sponsored research 

agreement, or other agreement as appropriate. Intel reserves the 

right to negotiate the final choice of agreement.  

The final award terms are expected to follow one or the other of 

two high-level intellectual property (IP) approaches. Either: (1) 

Intel and the university will jointly agree that IP developed under 

a grant or gift will be placed in the public domain, including 

offering software under an open-source license, or (2) Intel and 

the university will negotiate a sponsored research agreement 

with more specific IP terms, which, at a minimum, will require the 

university to grant Intel and other sponsors (if any) a broad non-

exclusive royalty free license to foreground IP. 

It is a requirement to follow approach (1) if a project’s software 

development directly enhances the Lava software framework or 

builds on pre-existing INRC shared software libraries. 

Please note that Intel is unable to receive proposals under an 

obligation of confidentiality. All proposals submitted should 

therefore include only public information.   Accepted proposals 

may be published to the INRC member site for community 

reference (i.e. visible to all other members engaged in INRC 

research), specifically sections 1-7.  Groups will have control over 

all such content on the INRC website and may request for their 

project details not to be shared at all in this manner with other 

members, if so desired. 

Proposal submissions and related inquiries should be sent to 

INRC_Project_Proposals@intel.com. 

 

 

  

mailto:INRC_Project_Proposals@intel.com
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The issuance of this RFP and the submission of a response by a respondent or the acceptance of such a response by Intel Corporation 

(“Intel”) does not obligate Intel in any manner.  The RFP is not an offer or a contract. Intel is not obligated to contract for any of the 

products/services described in the RFP. Intel reserves the right to: 

1) amend, modify or withdraw this RFP; 

2) revise any requirement of this RFP; 

3) waive any requirements of this RFP that are not material; 

4) seek clarifications and revisions of responses to this RFP; 

5) require supplemental statements or information from any responsible party; 

6) accept or reject any or all responses to this RFP; 

7) extend the deadline for submission of responses to this RFP or otherwise modify the schedule set forth in this RFP; 

8) negotiate potential terms with any respondent to this RFP; 

9) engage in discussions with any respondent to this RFP to correct and/or clarify responses; 

10) require clarification at any time during the procurement process and/or require correction of responses for the purpose of 

assuring a full and complete understanding of a respondent’s proposal and/or determine a respondent’s compliance with the 

requirements of the solicitation; and 

11) cancel, or reissue in whole or in part, this RFP, if Intel determines in its sole discretion that it is its best interest to do so. 

Intel may exercise the foregoing rights at any time without notice and without liability to any respondent or any other party for its 

expenses incurred in preparation of responses hereto or otherwise.  All costs associated with responding to this RFP will be at the sole 

cost and expense of the respondent.  Intel makes no representation or warranty and shall incur no liability under any law, statute, rules 

or regulations as to the accuracy, reliability or completeness of this RFP.  
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The purpose of this assessment is to determine (a) if the proposed neuromorphic algorithm is sufficiently well defined with properties 

that match well to a neuromorphic hardware implementation, (b) the general usefulness of the proposed algorithm, (c) if current Loihi 

silicon and software can support the algorithm, (d) how the algorithm will be assessed relative to state-of-the-art alternatives. 

 

 

What computational problem does the 

proposed algorithm solve? 

Ideally, this is a clear mathematical objective.  

 

What learning paradigms are involved, if 

any? 

E.g. Supervised (online or offline?), self-supervised, unsupervised, 

reinforcement-based, associative, gradient-based adaptation, continual, etc. 

 

What are the algorithm’s essential 

“neuromorphic” properties? 

E.g. Temporal neuron models, binary activations, sparse spike/event-based 

communication, sparse connectivity, recurrence, E/I balance, parameter 

plasticity, structural plasticity, fully local synaptic & neural information 

processing, distributed data representations. 

 

Are data input/output interfaces and 

encodings well defined? 

Does the algorithm operate on conventional data types, or spiking/event-

based data types? Does it process time series data streams with temporal 

structure (e.g. video), or isolated, uncorrelated samples (e.g. images)? 

 

How far towards a deployable 

neuromorphic solution will the 

proposed algorithmic research be 

taken? 

Is the aim to develop software that executes the algorithm on Loihi to 

process real-world data? Or is the goal a simulation-based demonstration 

believed to be compatible with Loihi HW? Something in between? 

 

How broadly applicable is the proposed 

algorithm? 

What real-world capabilities, applications, and technologies could this 

algorithm be used in? 

 

Characterize the difficulty of the 

problem to be solved. 

E.g. NP-complete/hard, existing state-of-the-art DNN network scale, typical 

Energy-Delay-Product application constraints, typical CPU runtime, etc.  

 

What value does a neuromorphic 

solution promise? 

Does the algorithm primarily improve the energy, speed, or data efficiency of 

existing algorithms?  Or is there no known conventional solution? 

 

Is the algorithm modular and 

composable? 

Can the algorithm be integrated into a larger application where the whole is 

greater than the sum of its parts?  

 

 

How mature is the proposed algorithmic 

approach? 

Are the key algorithmic or implementation ingredients understood or is it 

part of this proposal to develop such an understanding? What are the key 

open questions and risks? Do conventional ANN implementations exist? 

 

At what problem scale is the algorithm 

expected to be demonstrated? 

What scale will be demonstrated relative to the scale demanded by useful 

and impactful real-world applications? (In terms of physical metrics like I/O 

dimensionality, #parameters, #neurons, dataset size, stored 

patterns/classes, etc.)  

 

What requirements does the algorithm 

impose on Lava SW infrastructure or 

other algorithms? 

What infrastructure is expected to exist (or when will it need to exist)? Are 

there critical requirements on input/output bandwidth? 
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What can be said about the specific 

features and numeric precision required 

of the neuromorphic hardware? 

Note: Loihi’s synaptic variables provide up to 1B, while neural variables offer 

1B, 2B or 3B of (un)signed integer precision. 

 

Does the algorithm require on-chip 

synaptic plasticity? 

If so, are the learning rules supported by Loihi’s micro-code programmable 

learning engine, if known?   

 

Does the algorithm currently depend on 

features not supported by Loihi 2? 

(If known) Examples: division or transcendental functions applied to 

neuron/synaptic state changes, non-local weight normalization or transport. 

 

 

 

What methodology is being followed to 

develop this algorithm? 

Is the proposed algorithm from the category of mathematically derived 

algorithms or directly inspired by neuroscience modeling? 

 

What software tools will be used to 

develop the algorithm? 

E.g. Lava, Brian, Nengo, Matlab, directly coded Python/C++, TensorFlow, 

PyTorch, SLAYER, SpyTorch, Fugu, etc. 

 

How is the algorithm or initial neural 

network configured, parameterized, or 

trained? 

Does it rely on pre-training with back-propagation, manual parameter tuning, 

evolutionary methods or is the network configuration computed analytically? 

 

Does the algorithm involve continual 

online learning? If so, how? 

Is new knowledge absorbed into existing resources or reliant on allocating 

new memory resources over time? How is forgetting mitigated? Does learning 

rely on assumptions of IID input data? 

 

What neuron model(s) will be used? E.g. LIF, ALIF, CUBA, COBA, ReLU, Resonate-and-fire, Izhikevich, GLM, etc. 

 

How is data coded in the network? E.g. spike-based or integer-valued events, temporal coding, rate coding, 

population coding, mixtures thereof. 

 

How will the performance of the 

algorithm be evaluated? 

What are critical performance metrics? Will standardized benchmarks, 

datasets, simulation environments, etc. be used? If so, please list them. If not, 

how will performance be quantified in a replicatable manner? 

 

What competitive state-of-the-art 

conventional and neuromorphic 

solutions exist today, if any, and what 

HW platforms do they run on? 

Which of the current solutions are state-of-the-art with respect to the 

metrics/benchmarks above? Does the proposer have access to a working 

reference implementation of any of these competitive algorithms? 

 

What are the limitations or major pain 

points of current solutions? 

In what way are current solutions inadequate? Are they failing to meet real-

world application needs in terms of key metrics? 

 

 

Note: A neuromorphic algorithm solves a new, specific and well-defined computational problem by exploiting features of the 

underlying neuromorphic hardware system following established mathematical principles in machine learning, optimization, etc. or 

might be inspired by neuroscientific, bio-inspired modeling.  As an algorithmic project, there might still be open theoretical questions 

or how this algorithm can be supported by neuromorphic hardware, yet the value for overcoming those risks should be clearly spelled 

out and significant. If the theoretical open questions are too broad, the research best belongs in the Theory vector (RV1).  

 

In contrast, applications mostly build on top of previously coded algorithms that each have little execution risk. Application projects 

draw their novelty and impact from the composition of algorithms deployed and the value of real-world problem solved.  
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The purpose of this assessment is to determine (a) if the proposed application is sufficiently well defined, (b) if the value that 

neuromorphic technology can provide is well understood and compelling, (c) if the practical requirements of the application can be 

satisfied with algorithms, software, and systems available today, and (d) the likelihood of demonstrating an unambiguous state-of-the-

art solution.  

 

 
What is the task? Please provide a concise high-level description of the application.  

Are there any references to learn more about the task? 

 

What are the key computationally hard 

components of the task? 

Examples might be DNNs, ML algorithms, standard optimization objectives 

(LASSO, QUBO, MLIP, graph search, etc.) If non-standard, please provide a 

mathematical description or references to computational problem. What 

proportion of the task’s hard computational components will be solved 

neuromorphically? 

 

 

What is the impact of solving the task? Articulate in terms of value to the end user/customer. Why will anyone care 

that this task is successfully accomplished? 

 

Is there already an existing market or a 

path to commercialization for this 

application? 

Who are the customers? What is the path to commercialization? Any 

obstacles or recent enabling developments? What is the size of an existing 

market? 

 

How generalizable or broadly applicable 

is a solution to this task? 

How easy is it to generalize the task to other domains? 

What else could a superior implementation to components of the task be 

applied to? 

 

 

What are the key metrics to assess the 

performance or quality of this task? 

Examples could be energy or time to solution, accuracy or result with respect 

to some reference, area, cost. 

 

Are there critical data IO, throughput, latency, closed-loop requirements? 

 

Are there requirements on setup time? Setup time may include compiling a program or model, loading it onto a HW 

platform? 

If the application is typically launched once and executed for a long time, 

then the answer is likely no. If otherwise, please explain. 

 

What degree of programmability or 

flexibility is required by the HW 

compute platform? 

Does the task require the flexibility of a general-purpose CPU to maximize 

developer productivity or satisfy other constraints or is the task best served 

by a custom ASIC or anything in-between? 

 

Does the task require any real-time 

adaptation? 

Is the program or model entirely pre-configured or pre-trained before 

deployment or does it have to adapt after deployment by itself based on 

data? 

What type of adaptation is required? Backpropagation or other learning 

rules? 
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What neuromorphic methods will be 

used to solve the task? 

What algorithms, software, and other critical neuromorphic ingredients will 

be used? Please provide references wherever possible. 

 

How mature are these methods; what 

exists today versus what needs to be 

invented/proven? 

Have the necessary algorithms been modeled successfully to date? Have they 

been mapped to neuromorphic hardware and shown to work at the scale 

demanded by the application? Have all application precision requirements 

been considered? Do the relevant Lava software modules exist today? Are the 

modules interoperable/composable? 

 

 

What competitive state-of-the-art 

solutions exist today, if any? 

What are critical performance metrics? In what way are current solutions 

state of the art with respect to all or some metrics? 

Does the proposer have access to a working reference implementation to the 

problem based on conventional systems? 

 

What are the limitations or major pain 

points of current solutions? 

How and why are they insufficient? In what way do current solutions not 

address the desired key metric requirements? 

 

How will the neuromorphic solution be 

evaluated against other solutions?  

Are there standardized benchmarks to evaluate the proposed solution 

versus state-of-the-art alternatives? If so, please describe and provide 

references if possible. If not, how will success be defined? 
 

 


