
Scaling Up Neuromorphic Systems for 
Breakthroughs in Computing

Mike Davies | Director, Neuromorphic Computing Lab | Intel Labs
November 18, 2019



This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The information in this presentation is 
provided for information only and is not to be relied upon for any other purpose than educational. Intel makes no 
representations or warranties regarding the accuracy or completeness of the information in this presentation. Intel accepts no 
duty to update this presentation based on more current information. Intel is not liable for any damages, direct or indirect, 
consequential or otherwise, that may arise, directly or indirectly, from the use or misuse of the information in this presentation.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or 
service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.  No license (express or implied, by estoppel or otherwise) to any intellectual 
property rights is granted by this document.  Intel, the Intel logo, Movidius, Core, and Xeon are trademarks of Intel Corporation 
in the United States and other countries. 

*Other names and brands may be claimed as the property of others

Copyright © 2019 Intel Corporation.

Legal Information



COMPETITIVE
COMPUTER

ARCHITECTURES

1
2

3

Neuromorphic Computing Exploration Space
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“Deep Learning” / 
Artificial Neural Networks

Spiking Neural Networks

EXAMPLE WORKLOADS
▪ Learning without cloud assistance
▪ Learning with sparse supervision
▪ Online and lifelong learning 
▪ Probabilistic inference and learning
▪ Sparse coding
▪ Associative memory, similarity matching
▪ Nonlinear adaptive control (robotics)
▪ SLAM and path planning
▪ Constraint satisfaction
▪ Dynamical systems modeling

RESEARCH GOALS
▪ Broad class of brain-inspired computation
▪ Efficient hardware implementations
▪ Scalable from small to large problems 

and systems
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Some Principles of Neural Computation

Event-driven computation
with time

Low precision and stochastic Adaptive, self-modifying

Fine-grained parallelism
with massive fanout



INTEGRATED
MEMORY + COMPUTE

NEUROMORPHIC ARCHITECTURE

Our Loihi Research Chip

Davies et al, “Loihi: A Neuromorphic Manycore Processor 
with On-Chip Learning.” IEEE Micro, Jan/Feb 2018.

KEY PROPERTIES
▪ 128 neuromorphic cores supporting up to 128k 

neurons and 128M synapses with an advanced 
spiking neural network feature set.

▪ Supports highly complex neural network 
topologies

▪ Scalable on-chip learning capabilities to support 
an unprecedented range of learning algorithms

▪ Fully digital asynchronous implementation

▪ Fabricated in Intel’s 14nm FinFET process 
technology
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Chip Architecture

Technology: 14nm

Die Area: 60 mm2

Neuro cores: 128 cores

x86 cores: 3 LMT cores

Max # 
neurons: 128K neurons

Max # 
synapses: 128M synapses

Transistors: 2.07 billion

Memory: 33 MB

Efficiency: 42 GOPS/W

L
M

T
L

M
T

FPIO

P
a

ra
ll

e
l 

IO

L
M

T

Parallel IO

P
a

ra
ll

e
l 

IO

Parallel IO

Neuromorphic Mesh

Low-overhead NoC fabric
▪ 8x16-core 2D mesh

▪ Scalable to 1000’s cores

▪ Dimension order routed

▪ Two physical fabrics 

▪ 8 GB/s per hop

Neuromorphic core
▪ Leaky integrate-and-fire 

neuron model

▪ Programmable learning

▪ 128 KB synaptic memory

▪ Up to 1,024 neurons

▪ Asynchronous design

Parallel off-chip interfaces
▪ Two-phase asynchronous

▪ Single-ended signaling

▪ 100-200 MB/s BW

Embedded x86 processors
▪ Efficient spike-based 

communication with 
neuromorphic cores

▪ Data encoding/decoding

▪ Network configuration

▪ Synchronous design
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Mesh Operation: Fine-Grained Synchronization 

Time step T begins.

Cores update dynamic 
neuron state and evaluate 

firing thresholds

Above-threshold neurons 
send spike messages to 

fanout cores

(Two neuron firings shown.)

All neurons that fire in 
time T route their spike 

messages to all 
destination cores.

Barrier Synchronization
messages exchanged 

between all cores.

When complete, time 
advances to time step 

T+1.

1 2 3 4 5 6 7 8 9 10
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Programmable Learning with Local Plasticity 

Wx,y
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Scalable from Embedded IP to Datacenter

Scalable IP that can be 
embedded in SoCs 

(1-100mW)

Single chip form factors for 
edge devices, e.g. processing 

event-based camera input 
(<1W)

Multi-chip form factors for 
real-time AI, SLAM, planning, 

optimization

Rack-mounted datacenter 
appliance for analytics, 
workload acceleration, 

virtual robotics modeling, 
dynamical systems 

modeling, neuroscience 
research

Bare Loihi Chip Kapoho Bay Wolf Mountain Nahuku Pohoiki Beach
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Nx SDK Software Architecture

3rd party FrameworksComputational Modules

Compiler

Nx API

Nengo

LCA LSNN CSP

SLAYER ROS

Spiking Neural NetworkSnips

Nx Runtime

Graph
Search

EPL
Keras SNN Toolbox NRP



APPLICATIONS 

ALGORITHMS

Intel Neuromorphic Research Community

THEORY

PROGRAMMING 
MODELS

SENSORS & 
ACTUATORS 

75 Engaged academic, government, and industry groups
Email inrc_interest@intel.com to get involved!

Collaborating to Accelerate the Research





The Challenge: SNN Algorithm Discovery
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The Challenge: SNN Algorithm Discovery
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• Olfaction-inspired rapid learning
• SLAM
• Dynamic Neural Fields
• Evolutionary search
• Cortical models

New Ideas Guided by Neuroscience

3.m

2

• DNN -> SNN conversion
• SNN backpropagation
• Online SNN pseudo-backprop

Deep Learning Derived Approaches 

• Neural Engineering Framework (NEF)
• Locally Competitive Algorithm for LASSO
• Stochastic SNNs for solving CSPs
• Parallel graph search
• Phasor associative memories
• Vector symbolic architectures (VSA)
• Semantic pointer architecture (SPA)

Mathematically Formalized

3.i
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COMPETITIVE COMPUTER 
ARCHITECTURES

MACHINE LEARNING

NEUROSCIENCE
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Keyword Spotter DNN*

Keyword Spotter DNN* (batch size >1)

1D SLAM**

Sequential MNIST (LSNN***)

Sequential MNIST (batch size 64)

LASSO

Unit energy delay product (EDP)
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Loihi Quantitative Results Summary

Core i5 and i7

* P Blouw et al, 2018. arXiv:1812.01739
** G Tang et al, 2019. arXiv:1903.02504
*** Bellec et al, 2018. arXiv:1803.09574
See also http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf

batch
size 64 Xeon E5-2630

Kepler GK106 GPU

0
.1

GRAPH SEARCH

Performance results are based on testing as of December 2018 and may not 
reflect all publicly available security updates. No product can be absolutely 
secure. 

https://arxiv.org/abs/1903.02504
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf
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Event-Based Camera Gesture Recognition

DAVIS240C*
5mW static

5mW dynamic
1ms latency

Loihi†

36mW static
7mW dynamic
10ms latency

* iniVation DAVIS 240C performance numbers obtained from published specifications
† Intel Loihi measurements obtained using NxSDK v0.85 running on Wolf Mountain
Performance results are based on testing as of October 2019 and may not reflect all publicly available security updates. No product can be absolutely 
secure. 
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• SNN adaptive dynamic controller 
implemented on Loihi allows a robot arm 
to adjust in real time to nonlinear, 
unpredictable changes in system 
mechanics[1][2].

• Result outperforms standard PD & PID 
control algorithms.

Adaptive Control of a Robot Arm Using Loihi

[1] DeWolf, T., Stewart, T. C., Slotine, J. J., & Eliasmith, C. (2016, November). A 

spiking neural model of adaptive arm control. In Proc. R. Soc. B (Vol. 283, No. 

1843, p. 20162134). The Royal Society.

[2] Eliasmith, “Building applications with next generation neuromorphic 

hardware." NICE Workshop 2018



LASSO Sparse Coding
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min
𝑧

1

2
𝑥 − 𝐷𝑧 2

2 + 𝜆 𝑧 1

Problem

Input Sparse 
regularizationReconstruction

Implementation

𝑥

𝑧

Tang et al, arxiv: 1705:05475

𝐷 = zi zj….

𝑥1 𝑥2

𝒅𝒊 ⋅ 𝒙

- 𝒅𝑖
𝑇 ⋅ 𝒅𝑗 𝑧𝑗

Inhibition

Excitation

Neural Network Structure

The Spiking Locally Competitive Algorithm (S-LCA)



LCA Solver for LASSO Scales Incredibly Well on Loihi
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* Intel Core i7-4790 3.6GHz w/ 32GB RAM. FISTA solver: SPAMS http://spams-devel.gforge.inria.fr/
Performance results are based on testing as of August 2019 and may not reflect all publicly available 
security updates. No product can be absolutely secure. 

*
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Spiking LCA Dynamics on Loihi

LASSO Objective Over Time

Original Reconstruction Spikes Intense but very 
brief period of 

competition

Rapid convergence 
on a neuromorphic 

architecture

Great efficiency comes from exploiting sparsity in space and time



Path Planning with Spikes
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ROBOT MOTION LOIHI REPRESENTATION

DARPA SDR Site B
(Data from Radish Robotics Dataset)Based on Ponulak F., Hopfield J.J. Rapid, parallel path planning by 

propagating wavefronts of spiking neural activity. Front. Comput. 
Neurosci. 2013. V. 7. Article № e98.

Runtime comparison to best 
Dijkstra optimizations:

▪ Neuromorphic: O(𝐿⋅√𝑉)

▪ Standard: O(𝐸) 

For most nontrivial problems:

▪ L<<E

▪ V<<E

Neuromorphic solution uses fine-grain 
parallelism an temporal wavefront-
driven computation to potentially 

provide great performance gains for 
large problems.



Loihi: Fine-Grain Parallel Search

Using Loihi for Driving Directions in Colorado

Dijkstra: Sequential Breadth-First Search



More complex 
graphs give greater 

gains for Loihi
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Searching Small World Networks with Loihi
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* Intel Xeon 6136 3.00 GHz w/ 32GB RAM. ** with NetworkX graph analytics library
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No product can be absolutely secure. 
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Loihi provides sublinear scaling up to 1M nodes

Loihi searches the 
graph ~100x faster 

than a Xeon

(Djikstra’s Algorithm**)

https://networkx.github.io/documentation/networkx-1.10/overview.html


The Research Frontier
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FUNDAMENTAL PROPERTIES

▪ Fine-grain parallelism

▪ Local state

▪ Sparse temporal computation 

Loihi is the first neuromorphic chip to demonstrate compelling scaling results

BUT THIS IS ONLY THE BEGINNING

Low Energy Low Latency Adaptive Batch Size = 1 High Cost

ADVANTAGES

▪ Low energy

▪ Low latency

▪ Excellent scalability



Come See Pohoiki Beach Live in the Intel Booth!

Email inrc_interest @ intel.com for more information 
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