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Neuromorphic Computing Exploration Space

“Deep Learning” /
Artificial Neural Networks |

RESEARCH GOALS

= Broad class of brain-inspired computation
= Efficient hardware implementations

= Scalable from small to large problems
and systems

EXAMPLE WORKLOADS

Learning without cloud assistance
Learning with sparse supervision

Online and lifelong learning
Probabilistic inference and learning
Sparse coding

Associative memory, similarity matching
Nonlinear adaptive control (robotics)
SLAM and path planning

Constraint satisfaction

Dynamical systems modeling
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Spiking Neural Networksj




Some Principles of Neural Computation
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Our Loihi Research Chip

INTEGRATED
MEMORY + COMPUTE
NEUROMORPHIC ARCHITECTURE

KEY PROPERTIES

128 neuromorphic cores supporting up to 128k
neurons and 128M synapses with an advanced
spiking neural network feature set.

Supports highly complex neural network
topologies

Scalable on-chip learning capabilities to support
an unprecedented range of learning algorithms

Fully digital asynchronous implementation

Fabricated in Intel's T4nm FinFET process
technology

Davies et al, “Loihi: A Neuromorphic Manycore Processor
with On-Chip Learning.” IEEE Micro, Jan/Feb 2018.



Chip Architecture

. Neuromorphic core \
: = Leaky integrate-and-fire
neuron mocie
= — = Programmable learning
= |E B E B = B E B EyyE = 128 KB synaptic memory

SSag———gs ng——ge——g = Up to 1,024 neurons
@ \ = Asynchronous design

Technology: 14nm

Die Area: 60 mm?2

Neuro cores: 128 cores

x86 cores: 3 LMT cores

Max #
neurons:

\YEVE::
synapses:

128K neurons

128M synapses

Parallel off-chip interfaces

Transistors: 2.07 billion = Two-phase asynchronous
Memory: 33 MB . C— — — — C—— ’ " Slngle_ended Slgnallng
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Low-overhead NoC fabric \/ == Embedded x86 processors\
= 8x16-core 2D mesh @ , \ l \ , ‘ , ‘ , \ , = Efficient spike-based

Scalable to 1000's cores | = [ oe ot e ot e e e | e communication with

Dimension order routed neuromorphic cores

: . ' = Dat ding/decodi
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Mesh Operation: Fine-Grained Synchronization
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Time step T begins. Above-threshold neurons All neurons that fire in Barrier Synchronization
send spike messages to time T route their spike messages exchanged
Cores update dynamic fanout cores messages to all between all cores.
neuron state and evaluate destination cores.
firing thresholds (Two neuron firings shown.) When complete, time
advances to time step
T+1.
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Programmable Learning with Local Plasticity

.......... L LI

Supervision

y4(t) ‘ ‘ H

signal



EMBEDDED

Scalable from Embedded IP to Datacenter

Bare Loihi Chip Kapoho Bay Wolf Mountain Nahuku Pohoiki Beach

DATACENTER

Rack-mounted datacenter

appliance for analytics,
Multi-chip form factors for workload acceleration,

Single chip form factors for

Scalable IP that can be

: dge devices, e.g. processing . : : . :
embedded in SoCs € ) . real-time Al, SLAM, planning, virtual robotics modeling,
(1-1700mW) event bas(egﬁ/z\i/;nera input optimization dynamical systems
modeling, neuroscience
research



Nx SDK Software Architecture

Computational Modules 3rd party Frameworks
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Nx Runtime
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Intel Neuromorphic Research Community

Collaborating to Accelerate the Research

Intel News @ ( Foliow \,n v
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13 ENGAGED ACADEMIC, GOVERNMENT, AND INDUSTRY GROUPS

Email inrc_interest@intel.com to get involved!
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The Challenge: SNN Algorithm Disco

MACHINE LEARNING NEUROSCIENCE

COMPETITIVE COMPUTER
ARCHITECTURES

13



The Challenge: SNN Algorithm Discovery

k Deep Learning Derived Approaches W

* DNN -> SNN conversion
*  SNN backpropagation
* Online SNN pseudo-backprop

8 k Mathematically Formalized \1
\ * Neural Engineering Framework (NEF)
2 * Locally Competitive Algorithm for LASSO

» Stochastic SNNs for solving CSPs

2 » Parallel graph search
* Phasor associative memories
» Vector symbolic architectures (VSA)

3.m * Semantic pointer architecture (SPA)
> 3 . .
\\ k New Ideas Guided by Neuroscience W

. * Olfaction-inspired rapid learning
3. + SLAM
* Dynamic Neural Fields
* Evolutionary search
* Cortical models



Solution Time Ratio (vs Loihi)
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Loihi Quantitative Results Summary
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Energy Ratio (vs Loihi)

1,000,000

10,000,000

e Keyword Spotter DNN*

o Keyword Spotter DNN* (batch size >1)
1D SLAM**

e Sequential MNIST (LSNN***)

o Sequential MNIST (batch size 64)

e LASSO ® GRAPH SEARCH

----- Unit energy delay product (EDP)

*P Blouw et al, 2018. arXiv:1812.01739
**G Tang et al, 2019. arXiv:1903.02504
*** Bellec et al, 2018. arXiv:1803.09574
See also http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf

Performance results are based on testing as of December 2018 and may not
reflect all publicly available security updates. No product can be absolutely
secure.

15


https://arxiv.org/abs/1903.02504
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf

Event-Based Camera Gesture Recognition

DAVIS240C*
5mW static
5mW dynamic
1ms latency

Loihif
36mW static
7mW dynamic
10ms latency

* iniVation DAVIS 240C performance numbers obtained from published specifications
T Intel Loihi measurements obtained using NxSDK v0.85 running on Wolf Mountain

Performance results are based on testing as of October 2019 and may not reflect all publicly available security updates. No product can be absolutely
secure.




- SNN adaptive dynamic controller

. Result outperforms standard PD & PID

Adaptive Control of a Robot Arm Using Loihi

implemented on Loihi allows a robot arm
to adjust in real time to nonlinear,
unpredictable changes in system
mechanicse]

control algorithmes.

q.9.u

Uodapt [1] DeWolf, T., Stewart, T. C., Slotine, J. J., & Eliasmith, C. (2016, November). A
spiking neural model of adaptive arm control. In Proc. R. Soc. B (Vol. 283, No.
1843, p. 20162134). The Royal Society.

Workstation Loihi Hardware [2] Eliasmith, “Building applications with next generation neuromorphic
hardware." N/ICE Workshop 2018




LASSO Sparse Coding

The Spiking Locally Competitive Algorithm (S-LCA)

Problem Neural Network Structure

mzinz lx — Dz||5 + Allz]l4 Inhibition
T
Input I Splrse '(d’{' * d])Z]

Reconstruction  regularization A

Implementation

In the neural network
formulation, feature
neurons compete to
reconstruct image with
as few contributors as
possible

Tang et al, arxiv: 1705:05475



LCA Solver for LASSO Scales Incredibly Well on Loihi

Time to solution Energy to solution
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* Intel Core i7-4790 3.6GHz w/ 32GB RAM. FISTA solver: SPAMS http://spams-devel.gforge.inria.fr/
lnter, Performance results are based on testing as of August 2019 and may not reflect all publicly available
security updates. No product can be absolutely secure.



Spiking LCA Dynamics on Loihi

Intense but very
brief period of
competition

Original Reconstruction Spikes
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Great efficiency comes from exploiting sparsity in space and time
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Path Planning with Spikes

Runtime comparison to best
Dijkstra optimizations: ROBOT MOTION LOIHI REPRESENTATION

= Neuromorphic: O(L-VV) i L

= Standard: O(E) A % l ul lbl :Jr L:JJ_”
For most nontrivial problems: | E’ : I |
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e it 1 o | ‘l_LJ Place Cells

Neuromorphic solution uses fine-grain
parallelism an temporal wavefront-

| B

DARPA SDR Site B
Based on Ponulak F., Hopfield J.J. Rapid, parallel path planning by (Data fro m Rad |S h RO bOtl CS Dataset)

propagating wavefronts of spiking neural activity. Front. Comput.
Neurosci. 2013. V. 7. Article N2 e98.
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Using Loihi for Driving Directions in Colorado

Loihi: Fine-Grain Parallel Search

Dijkstra: Sequential Breadth-First Search
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More complex

graphs give greater

N

gains for Loihi




Xeon 6136 3GHz*
12 MB of cache

Nahuku
32-chip Loihi System

Searching Small World Networks with Loihi

Watts-Strogatz network model with rewiring probability 20%.

Runtime for 10 edges per node

Runtime for 100,000 nodes
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* Intel Xeon 6136 3.00 GHz w/ 32GB RAM. ** with NetworkX graph analytics library
Performance results are based on testing as of December 2018 and may not reflect all publicly available security updates. No product can be absolutely secure.


https://networkx.github.io/documentation/networkx-1.10/overview.html

The Research Frontier

Loihi is the first neuromorphic chip to demonstrate compelling scaling results

BUT THIS IS ONLY THE BEGINNING

FUNDAMENTAL PROPERTIES ADVANTAGES
= Fine-grain parallelism = Low energy
= |Local state = Low latency
= Sparse temporal computation = Excellent scalability

Low Energy Batch Size =1 High Cost



Come See Pohoiki Beach Live in the Intel Booth!

Email inrc_interest @ intel.com for more information



Keyword recognition
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localhost:8080/?filename=live_keyword_demo.py

» live_keyword_demo.py

Audio Input
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Filtered Output
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Decision: Not accepted!
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Build finished in 0:00:01.
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