

LOIHI ARCHITECTURE OVERVIEW

Mike Davies Director, Neuromorphic Computing Lab | Intel Labs

March 29, 2019 Neuro-Inspired Computational Elements, SUNY Polytechnic Institute

LEGAL INFORMATION

This presentation contains the general insights and opinions of Intel Corporation ("Intel"). The information in this presentation is provided for information only and is not to be relied upon for any other purpose than educational. Intel makes no representations or warranties regarding the accuracy or completeness of the information in this presentation. Intel accepts no duty to update this presentation based on more current information. Intel is not liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or indirectly, from the use or misuse of the information in this presentation.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel, the Intel logo, Movidius, Core, and Xeon are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2019 Intel Corporation.

The Engineering Perspective

- Nature has come up with something amazing. Let's copy it...
- Not so simple very different design regimes
- Yet objectives and constraints are largely the same...
 - **Energy minimization**
 - Fast response time
 - Cheap to produce

Need to understand and apply the basic principles, *adapting for differences*

Status today:

	Nature		Silicon	Ratio	
Neuron density ^[1]	100k/mm ²		5k/mm ²	20x	
Synaptic area ^[1]	0.001 um ²		0.4 um ^{2[2]}	400x	
Synaptic Op Energy	~2 fJ		~4 pJ	2000x	
But [1] Planar neocortex [2] ~5b SRA					
Max firing rate	100 Hz		1 GHz	10,000,000x	
Synaptic error rate	75%		0%	00	
Nature		Silico	n		
Autonomous self-assembly		Fabricated manufacturing			
Per-instance variability desired		Variability causes brittle failures			
Limited plasticity over lifetime		Must support rapid reprogramming			
Nondeterministic operation		Deterministic operation desired			

Exploiting Sparsity with Spikes

Chip Architecture

Technology:	14nm	
Die Area:	60 mm ²	
Core area:	0.41 mm ²	
NmC cores:	128 cores	
x86 cores:	3 LMT cores	
Max # neurons:	128K neurons	
Max # synapses:	128M synapses	
Transistors:	2.07 billion	

Low-overhead NoC fabric

- 8x16-core 2D mesh
- Scalable to 1000's cores
- Dimension order routed
- Two physical fabrics
- 8 GB/s per hop

Neuromorphic Core Architecture

Neuromorphic Core Microarchitecture

Basic Core Operation (Non-Learning)

(Time multiplexing illustrated unrolled in space)

Learning with Synaptic Plasticity

- Local learning rules essential property for efficient scalability
- Rules derived by optimizing an emergent statistical objective
- Plasticity on wide range of time scales for
 - ✓ Immediate supervised (labelled) learning
 - ✓ Unsupervised self-organization
 - ✓ Working memory
 - ✓ Reinforcement-based delayed feedback

Learning rules for weight $W_{x,y}$ may *only* access presynaptic state x and postsynaptic state y

Reward spikes may be used to distribute graded reward/punishment values to a particular set of axon fanouts

Loihi's Trace-Based Programmable Learning

Learning Rule Examples

Pairwise STDP:

$$W(t+1) = W(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t)$$

Triplet STDP with heterosynaptic decay:

$$W(t+1) = W(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t)y_{2}(t) - B \cdot W(t) \cdot y_{3}(t)$$

Delay STDP:

$$D(t+1) = D(t) - A_{-} \frac{x_{0}(t)}{(127 - y_{1}(t))} + A_{+}(127 - \frac{x_{1}(t)}{y_{0}(t)})$$

Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:

$$T(t+1) = T(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t) - B \cdot T(t)$$

 $W(t+1) = W(t) + C \cdot r_1(t) \cdot T(t)$

STDP with dynamic weight consolidation:

$$W(t+1) = W(t) - A_{-}x_{0}(t)y_{1}(t) + A_{+}x_{1}(t)y_{0}(t)y_{2}(t) - B_{1}(W-T)y_{3}(t)y_{0}(t)$$

$$T(t+1) = T(t) + \frac{1}{\tau_{cons}}(W-T) - B_2 T(w_{\theta} - T)(w_{max} - T)$$

Hierarchical Connectivity

Multi-Compartment Neurons

Dendritic Compartment Unit Model

Dendritic Compartments: Structural Model

(intel)

Min/Max Threshold Homeostasis

Loihi supports intrinsic excitability homeostasis (aka threshold adaptation)

Dynamics:

$$\Delta V_{th}(t) = \begin{cases} \beta(a(t) - a_{min}), & \text{if } a(t) < a_{min} \\ \beta(a(t) - a_{max}), & \text{if } a(t) > a_{max} \end{cases}$$
$$V_{th}(t) = V_{th}(t - T_{epoch}) + \Delta V_{th}(t)$$

(in terms of neuron's *activity trace* a(t))

Evaluated periodically every *Dendritic epoch*. (Usually set the same as the learning epoch)

Parameters:

Parameter	Bits	Definition
a _{max}	7	Maximum activity level above which Vth will be raised.
a _{min}	7	Minimum activity level, below which Vth will be lowered.
β	4	Scaling constant relating activity trace differences to threshold changes.

Example Homeostasis Dynamics

Synaptic input drops abruptly at t=5000. 8K) Input spike rate Activity (0-127) drops abruptly - - - - - Amir ---- Amax Time Step

Neuron with abrupt input rate change

Other Synaptic Features

Mesh Operation: Fine-Grained Synchronization

Time step T begins.

Cores update dynamic neuron state and evaluate firing thresholds

Above-threshold neurons send spike messages to fanout cores

(Two neuron firings shown.)

All neurons that fire in time T route their spike messages to all destination cores.

Exploring Mesh Scaling to 32 Chips Graph Search on Nahuku (32-chip Loihi System)

