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The Engineering Perspective 

Nature Silicon Ratio

Neuron density[1] 100k/mm2 5k/mm2 20x

Synaptic area[1] 0.001 um2 0.4 um2[2] 400x

Synaptic Op Energy ~2 fJ ~4 pJ 2000x

[1] Planar neocortex   [2] ~5b SRAM

Max firing rate 100 Hz 1 GHz 10,000,000x

Synaptic error rate 75% 0% ∞

But…

Status today:

Nature Silicon

Autonomous self-assembly Fabricated manufacturing

Per-instance variability desired Variability causes brittle failures

Limited plasticity over lifetime Must support rapid reprogramming

Nondeterministic operation Deterministic operation desired

• Nature has come up with 
something amazing.  Let’s 
copy it…

• Not so simple – very different 
design regimes

• Yet objectives and constraints 
are largely the same…

Energy minimization

Fast response time

Cheap to produce

Need to understand and apply the 
basic principles, adapting for 

differences
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Exploiting Sparsity with Spikes
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Chip Architecture

Technology: 14nm

Die Area: 60 mm2

Core area: 0.41 mm2

NmC cores: 128 cores

x86 cores: 3 LMT cores

Max # neurons: 128K neurons

Max # synapses: 128M synapses

Transistors: 2.07 billion

Low-overhead NoC fabric
• 8x16-core 2D mesh
• Scalable to 1000’s cores
• Dimension order routed
• Two physical fabrics 
• 8 GB/s per hop
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Parallel IO

Neuromorphic Mesh
Parallel off-chip interfaces
• Two-phase asynchronous
• Single-ended signaling
• 100-200 MB/s BW

Embedded x86 processors
• Efficient spike-based 

communication with 
neuromorphic cores

• Data encoding/decoding
• Network configuration
• Synchronous design

Neuromorphic core
• LIF neuron model
• Programmable learning
• 128 KB synaptic memory
• Up to 1,024 neurons
• Asynchronous design
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Neuromorphic Core Architecture

Discrete time LIF neuron model (CUBA)

Multi-compartment dendritic trees
up to 1K compartments

Intrinsic excitability homeostasis

Shared output routing table
4K axon routes

Axon delays

Refractory delays (+ random)

All synaptic connections pooled
128KB shared memory

Sparse, dense, and hierarchical
Synaptic mapping representations 

Synaptic delays

Synaptic eligibility traces

Flexible 3-tuple synaptic variables
(1-9b weight, 0-6b delay, 0-8b tag)

Graded “reward spikes”

Flexible synaptic plasticity with

microcode-programmable rules

Sum-of-products rule semantics
Plasticity rules target any synaptic variable

Filtered spike train traces

Random noise sources
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Neuromorphic Core Microarchitecture

DENDRITE AXONSYNAPSE
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Up to 4-way parallelism in 
spike accumulation pipeline

4-way parallelism: 
learning pipeline

Overloaded SRAM layouts
depending on configuration/context

Writeback buffer

Multi-bank array

Pervasive read-modify-write
access patterns.

Bank striping with delayed writeback
used to implement pseudo dual-
ported memories.

Learning rule 
microcode memory 
indexed by profile# 

bound to each synapse 

Single point of
command arbitration

WR
RD

Management accesses 
received in-band from 
NoC

Spikes load-balanced over
two physical NoC fabrics

Widespread variable iteration and unpredictable stalling ⇒ excellent match for async design
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Basic Core Operation (Non-Learning)

SYNAPSE DENDRITE

T+1 T+2 T+3 TT+4

(Wi,Di)

AxonID

WeightSum idx
CFG[idx] STATE[idx]

AxonIDj

AxonIDj+1

Input spike routing

Tables (very complex)

Output spike routing

tables (simpler)

Synaptic delay handling

(Time multiplexing illustrated unrolled in space)

Neuron model
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Learning with Synaptic Plasticity

• Local learning rules – essential property for 
efficient scalability

• Rules derived by optimizing an emergent 
statistical objective

• Plasticity on wide range of time scales for 

 Immediate supervised (labelled) learning

 Unsupervised self-organization

 Working memory

 Reinforcement-based delayed feedback

Wx,y

x y

z

𝐸 = 𝑜 − 𝑠

o

Supervision
signal

Learning rules for weight Wx,y

may only access presynaptic 
state x and postsynaptic state y

Reward spikes may be used to 
distribute graded 
reward/punishment values to a 
particular set of axon fanouts
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Loihi’s Trace-Based Programmable Learning

x1(t)

y1(t)

x2(t)

y2(t)

τ=20

τ=20

τ=200

τ=200

𝑤′ = 𝑤 + 

𝑖=1

𝑁𝑃

𝑆𝑖  

𝑗=1

𝑛𝑖

(𝑉𝑖,𝑗 + 𝐶𝑖,𝑗)

w

Short time scale trace correlations 
=> STDP regime

Long time scale traces respond 
to correlations in activity rates

Weight, Delay, and Tag learning rules 
programmed as sum-of-product equations

Variable Dependencies
X0, Y0, X1, Y1, X2, Y2, R1

Wgt, Delay, Tag, etc.

Synaptic Variables
Wgt, Delay, Tag
(variable precision)Traces are low precision (7-9b) 

and may decay stochastically for 
implementation efficiency

Presynaptic spike
‘X’ traces

Postsynaptic spike
‘Y’ traces

Trace: Exponentially 
filtered spike train

Intel Confidential
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Learning Rule Examples

Pairwise STDP:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1(𝑡)𝑦0(𝑡)

Triplet STDP with heterosynaptic decay:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 𝑦2 𝑡 − 𝐵 ⋅ 𝑊(𝑡) ⋅ 𝑦3(𝑡)

Delay STDP:

𝐷(𝑡 + 1) = 𝐷(𝑡) − 𝐴−𝑥0 𝑡 (127 − 𝑦1 𝑡 ) + 𝐴+(127 − 𝑥1 𝑡 )𝑦0(𝑡)
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Two-variable Learning Rule Examples

Distal Reward with Synaptic Tags:

𝑇 𝑡 + 1 = 𝑇 𝑡 − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 − 𝐵 ⋅ 𝑇(𝑡)

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝐶 ⋅ 𝑟1(𝑡) ⋅ 𝑇(𝑡)

STDP with dynamic weight consolidation:

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝐴−𝑥0 𝑡 𝑦1 𝑡 + 𝐴+𝑥1 𝑡 𝑦0 𝑡 𝑦2 𝑡 − 𝐵1(𝑊 − 𝑇)𝑦3 𝑡 𝑦0 𝑡

𝑇(𝑡 + 1) = 𝑇(𝑡) + 1
𝜏𝑐𝑜𝑛𝑠

𝑊 − 𝑇 − 𝐵2𝑇(𝑤𝜃 − 𝑇)(𝑤𝑚𝑎𝑥 − 𝑇)
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Hierarchical Connectivity

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Conventional 1D convolution example w/ Lateral inhibition

Generalized Hierarchical 
Connectivity Example

Generalization of the “convolution” in ConvNets



Multi-Compartment Neurons
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STATE, CFGDENDRITE_ACCUM

∆

Spike
Output

Update
Logic

Dendritic compartment state

• Any DENDRITE index may be configured as either 
a compartment in the dendritic tree or a soma.

• Tree structure implemented by propagating and 
combining real-valued current/voltage state 
iteratively.



Dendritic Compartment Unit Model
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Dendritic Compartments: Structural Model 
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δ4

δ3

δ2

δ1

δ5

Spike output
to AXON_MAP

δi
From

DENDRITE
ACCUM

Input from 
prior dendrites 

δj, j<i

Output from 
dendrite δi

Optional spike output

Pop A and/or B values from 
compartment stack

Push Y output to stack

Compartment join operations

0: (NOP)
1: (ADD_U) U’ = U+A+B
2: (MAX_U)   U’ = max(U,A,B)
3: (MIN_U)   U’ = min(U,A,B)
4: (PASS_U) U’ = A.S ? U+B : 0
5: (BLOCK_U) U’ = A.S ? 0 : U + B
6: (OR_S)    S’ = A.S | B.S | S
7: (AND_S)   S’ = A.S & B.S & S
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Δ𝑉𝑡ℎ 𝑡 =  
𝛽 𝑎 𝑡 − 𝑎𝑚𝑖𝑛 , 𝑖𝑓 𝑎 𝑡 < 𝑎𝑚𝑖𝑛

𝛽 𝑎 𝑡 − 𝑎𝑚𝑎𝑥 , 𝑖𝑓 𝑎 𝑡 > 𝑎𝑚𝑎𝑥

𝑉𝑡ℎ 𝑡 = 𝑉𝑡ℎ 𝑡 − 𝑇𝑒𝑝𝑜𝑐ℎ + Δ𝑉𝑡ℎ 𝑡

Min/Max Threshold Homeostasis

Parameter Bits Definition

amax 7 Maximum activity level above 
which Vth will be raised.

amin 7 Minimum activity level, below 
which Vth will be lowered.

𝛽 4 Scaling constant relating activity 
trace differences to threshold 
changes.

Parameters:

(in terms of neuron’s activity trace a(t))

Evaluated periodically every Dendritic epoch.  
(Usually set the same as the learning epoch)

Loihi supports intrinsic excitability homeostasis (aka threshold adaptation) 

Dynamics:
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Example Homeostasis Dynamics

Neuron with abrupt input rate change
Synaptic input drops abruptly at t=5000.
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Other Synaptic Features

wgt

𝜏
dly

Input spike arrival

Conventional exponential 
PSC response

Example usage for CSP 
with stochastic SNNs, 
e.g.
Jonke, Habenschuss , 
Maass 2016

Box Synapses

EffectiveWgt =
sgn Wgt ⋅ min(𝑊𝑔𝑡𝐿𝑖𝑚𝑖𝑡, Wgt ⋅ 2𝑆𝑐𝑎𝑙𝑖𝑛𝑔)

When enabled, may think of the learned 
weight as a permanence value.

Learned Wgt value

Weight Applied to PSC

WgtLimit

Weight Scaling

wgt

dly

Box Synapse
PSC response



20

Mesh Operation: Fine-Grained Synchronization 

Time step T begins.

Cores update dynamic 
neuron state and 

evaluate firing thresholds

Above-threshold 
neurons send spike 

messages to fanout cores

(Two neuron firings shown.)

All neurons that fire in 
time T route their spike 

messages to all 
destination cores.

Barrier Synchronization
messages exchanged 

between all cores.

When complete, time 
advances to time step 

T+1.

N-bound
Messages

S-bound
Messages

Barrier synchronization 
wavefronts advance time 

to T+1

1 2 3 4 5 6 7 8 9 10
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Learning overhead 
decreases with 
increasing core 

parallelism

Spike overhead 
decreases, then 
increases with 
increasing core 

parallelism
~3.9us (latest optimization)
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Exploring Mesh Scaling to 32 Chips
Graph Search on Nahuku (32-chip Loihi System)

One Chip 32 Chips
Fixed 128-way core 

parallelism. 
Slowdown due to 
increased barrier 
sync time over 32 

chips vs 1 chip

50 50

50

50x50x50 3D lattice

Performance results are based on 
testing as of March 2019 and may 
not reflect all publicly available 
security updates. No product can 
be absolutely secure. 

Increasing core 
parallelism with 
fixed chip count




