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Background 

Computer architects and machine learning researchers 
have long looked to the brain for inspiration. Some of the 
earliest computer architectures and neural network 
models were developed with crude models of neural 
computation in mind.  These include John von 
Neumann’s processor architecture that has thrived over 
many decades, as well as the Artificial Neural Network 
model that has more recently begun to deliver great 
practical value. 

Those in the neuromorphic research field believe that 
now, more than ever, breakthroughs in computing and 
artificial intelligence may come from the study of 
neuroscience. The recent success of deep learning has 
confirmed that connectionist models of intelligence can 
yield impressive and dramatic gains compared to 
alternative methods.  Deep learning has become a widely 
deployed tool that now impacts nearly every aspect of 
our lives. Yet anyone who has observed the rapid 
learning behavior of a toddler, or anyone who wishes to 
deploy advanced AI capabilities in edge devices, 
appreciates that our AI technology still has a long way to 
go before it approaches the capabilities and efficiency of 
natural intelligence found in the brains of organisms. 

All researchers in computing, including AI researchers, 
are at the mercy of the computer architectures available 
to them.  In the 1980s, advances in neural networks were 
limited by the poor floating point support of that era’s 
computers.  At that time, simple linear threshold units 
were most commonly studied, the discontinuities of 
which precluded the use of backpropagation and scaling 
to large networks.  Over time, improved floating point 
performance encouraged researchers like LeCun, 
Rumelhart, and Hinton to adopt sigmoidal and rectified 
linear activation functions. Neural networks thereby 
became differentiable and those researchers were able 
to apply powerful optimization methods, specifically the 
backpropagation algorithm, which could then be scaled 
to large multi-layered networks.  These techniques came 
to fruition in the 2000s with the availability of plentiful 
training data that the GPUs of that era could rapidly 
process in batched form with highly provisioned floating 
point resources. 

Today, those interested in more advanced neuro-
inspired connectionist algorithms face an even more 
severe computational roadblock. The neural networks 
we find in nature are radically different from the deep 
learning networks in common use today.  Natural neural 

networks are sparsely connected and pervasively 
recurrent.  They continuously adapt on a wide range of 
timescales in response to individual, non-batched, and 
mostly unlabeled data samples.  They utilize 
discontinuous spike events to achieve sparse activation 
in time.  These characteristics, among others, lead to 
dramatic efficiencies in nature but make them extremely 
ill-suited for executing on Von Neumann processors and 
matrix arithmetic accelerators optimized for today’s 
deep networks. 

This perspective informs our neuromorphic research 
program in Intel Labs.  We intend to move beyond Von 
Neumann and matrix arithmetic architectures to arrive 
at a general neural processor architecture that is much 
better suited for the types of neural connectionist 
algorithms under study at the forefront of neuroscience.  
We seek to apply the principles of neural computation as 
understood today to the form and function of silicon 
integrated circuits.  We hope that these neuromorphic 
architectures may better realize the brain’s energy 
efficiency compared to conventional architectures and 
may match the brain’s ability to learn and adapt, leading 
to breakthroughs in neuro-inspired computation. 

The Loihi Neuromorphic Research Processor 

In January of 2018, Intel released its Loihi neuromorphic 
research chip [1]. This first-of-its-kind processor 
implements a programmable learning architecture 
supporting a wide range of neuroplasticity mechanisms 
under study in the modern field of computational 
neuroscience (for example, see [2] [3] [4] [5] [6]).  These 
features provide Loihi with the ability to integrate and 
respond to real-world information received continuously 
over time and to intelligently adapt behavior in order to 
satisfy functional objectives, similar to the operation of 
the brains of organisms found in nature. 

By replicating many of the fundamental architectural 
properties of biological neurons, Loihi offers highly 
efficient and scalable learning performance compared to 
conventional machine learning methods.  In particular, 
Loihi’s advanced spiking neural network feature set with 
programmable local learning rules enable a broad class 
of neuro-inspired algorithms supporting supervised, 
unsupervised, reinforcement-based, and one-shot 
learning paradigms.  Loihi has a fully asynchronous 
design implementation that allows it to rapidly process 
information in an event-driven fashion, mapping those 
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events to fine-grain parallel units that compute with 
temporally sparse spike messages. 

Although Loihi is a research chip that will not, in its 
current form, be sold commercially, Loihi was designed 
to near-commercial standards and fabbed with Intel’s 
14nm FinFET CMOS process technology.  Sufficiently 
large quantities of Loihi chips have been manufactured 
to support a vibrant research ecosystem.  Over the past 
year, Intel has developed a number of Loihi hardware 
systems that are now being used by collaborators to 
evaluate the potential of Loihi’s neuromorphic learning.  
These include a range of devices from single-chip USB 
form-factor systems to 32-chip boards that users access 
remotely to a large 768-chip scalable system under 
development. 

In March of 2018, Intel demonstrated an example object 
recognition and learning application on Loihi that 
operates in real-time consuming 74 mW [7].  At the 2018 
NICE workshop in Hillsboro, Oregon, Intel’s collaborator, 
Applied Brain Research (ABR), demonstrated a compliant 
6-DOF robotic arm control application in which Loihi’s 
learning features allow the arm to adapt in real time to 
unpredictable environment perturbations [8]. 

Since those initial examples, the breadth of algorithms 
running on Loihi has steadily expanded, and researchers 
are now quantitatively evaluating Loihi’s performance 
and efficiency compared to conventional architectures.  
The results are compelling.  Applied Brain Research has 
shown that Loihi provides the most efficient solution 
among all commercially available computing 
architectures for audio deep network inference by 
factors ranging from 5x to over 100x [9].  Loihi supports 
a one-dimensional Simultaneous Localization and 
Mapping (SLAM) algorithm that operates at 100x lower 
power compared to standard CPU-based methods [10], 
and Intel’s own evaluations of the Spiking Locally 
Competitive Algorithm and a graph search (Dijkstra’s) 
algorithm show performance improvement factors from 
100 to 10,000 times compared to CPUs1.  In general, we 
are finding that whenever an algorithm can be 
formulated to run on Loihi, leveraging the architecture’s 
fine-grain parallelism and sparse activity, it tends to 

                                                           
1 LASSO comparison: FISTA algorithm from SPAMS 
(http://spams-devel.gforge.inria.fr/) running on an Intel Core 
i7-4790 3.6GHz with 32GB RAM was compared to the LCA 
module of NxSDK v0.8 on Loihi.  For graph search: the 
NetworkX implementation of Dijkstra’s Algorithm 
(https://networkx.github.io/) on an Intel Xeon 6136 3.00 GHz 

outperform alternative methods on conventional 
architectures by orders of magnitude.  Moreover, the 
relative gains on Loihi increase with increasing problem 
scale. 

In some cases, as hoped, Loihi’s bottom-up neuro-
inspired architecture is enabling algorithms that have no 
direct analogy to conventionally coded algorithms.  
Working with Thomas Cleland, a neuroscientist from 
Cornell who studies biophysical models of the 
mammalian olfactory system, we have developed 
olfaction-inspired networks at a level of abstraction that 
run on Loihi and exhibit many of the same remarkable 
properties of the biological system: efficient spike-based 
oscillatory dynamics, one-shot learning, and 
classification performance that exceeds conventional 
artificial olfaction approaches [11].  Other researchers 
are exploring astrocyte modeling on Loihi in order to 
stabilize emergent neural oscillatory dynamics [12].  This 
new class of oscillatory spiking neural networks, what we 
are calling phasor neural networks, are uniquely suited 
for Loihi’s architecture.  We believe they will lead to a 
wide space of novel and highly efficient neuro-inspired 
algorithms with direct correspondence to the mysterious 
but pervasive rhythms observed in brains (for example, 
[13]). 

To support productive algorithms and applications 
research, Intel is developing a novel software stack for 
Loihi systems, named Nx SDK.  The Nx SDK framework 
provides a general API, compiler, and runtime for Loihi 
development, exposing the architecture’s full range of 
learning capabilities.  It may be extended by a variety of 
third party frameworks.  For example, with Intel’s 
support, Applied Brain Research has ported its Nengo 
toolchain [14] to Loihi platforms.  Nengo on Loihi now 
supports a number of baseline capabilities, including the 
construction of working memories, nonlinear dynamical 
systems, multi-layer perceptron networks trained with 
TensorFlow, and learning modules using ABR’s PES rule 
[15].  Over the coming months, we expect collaborators 
to implement Nx SDK integration with the EONS 
evolutionary optimization framework from University of 

with 32GB RAM was compared to the performance of a 32-
chip Nahuku system running NxSDK v0.8.   
 
Performance results are based on testing as of December 
2018 and may not reflect all publicly available security 
updates. No product can be absolutely secure. 
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Tennessee and Oak Ridge National Labs as well as with 
the Human Brain Project’s Neurorobotics Platform [16]. 

More information about Loihi’s architecture and 
programming model is available in recent Intel Labs 

publications [1] [17] [18], as well as on Intel’s INRC 
website [19] (private access, invitation available upon 
request to inrc_interest@intel.com.) 

 

Intel Neuromorphic Research Community 

1. Objectives and Structure 

In March of 2018, Intel Labs launched the Intel 
Neuromorphic Research Community (INRC). This 
collaborative research program is open to worldwide 
academic, government, and industry research groups 
interested in tackling the hurdles facing the adoption of 
neuromorphic architectures for mainstream computing 
applications.  INRC members are using Loihi, as the 
industry’s only fully functional and high performance 
neuro-inspired processor architecture, to accelerate 
their research.  Intel hopes the findings of this 
community will drive future improvement of 
neuromorphic architectures, software, and systems, 
eventually leading to the commercialization of this 
nascent technology. 

For the majority of INRC activities, Intel’s primary role is 
to provide access to Loihi systems and the Loihi Software 
Development Kit (Nx SDK) across a range of engagement 
models.  Additionally, a limited amount of funding is 
available from Intel’s Corporate University Research 
Office (CUR) in support of particularly compelling 
academic project proposals.  In April of 2018 a call for 
proposals was issued resulting in the submission of over 
sixty project proposals.  Given a budget of $2.25M over 
three years ($750k per year), Intel was only able to fund 
12 of these proposals, but the majority of PIs who 

submitted proposals have since managed to engage with 
the INRC and pursue their proposed research on Loihi in 
a self-funded manner, albeit with reduced project scope. 

Since neuromorphic computing entails nothing less than 
a bottom-up rethinking of computer architecture, 
beginning potentially at the device technology level, 
unsolved and important research problems can be found 
at all levels of the computing stack, from the process 
technology level to circuits to microarchitecture and 
silicon design to algorithms to software programming 
models to end applications.  Figure 1 illustrates the full 
range of neuromorphic computing research vectors Intel 
and others are engaged in.  Red vectors indicate 
hardware-oriented areas; blue vectors indicate theory 
and usage-oriented areas. 

It is our view that, with the availability of Loihi, the state 
of neuromorphic hardware capabilities now significantly 
leads the state of algorithmic, application, and 
programming understanding.  As such, the focus of INRC 
is on research vectors RV1 through RV5.  For the 
foreseeable future, we intend to use Loihi and future 
silicon iterations as our primary vehicle for collaboration 
with a broadening network of researchers.  Although we 
support and internally pursue research vectors RV6-8, 
these areas are not the focus of the INRC. 

Figure 1. Neuromorphic Research Vectors 

mailto:inrc_interest@intel.com


Intel Neuromorphic Research Overview and Status 

Copyright © 2019, INTEL CORPORATION. All rights reserved – unpublished work. P a g e  | 5 

Given the state of neuromorphic research and our 
ranking of priorities, we expect INRC activity and Intel’s 
funding investments to focus disproportionately on RV2 
initially with, we hope, a shift to RV3 over time as a 
broadening portfolio of mature algorithms enable a wide 
range of applications.  We see RV1, RV4, and RV5 vectors 
as important but more limited areas of INRC focus. 

The ultimate goals for INRC and Intel’s neuromorphic 
research are the following:  

1) Identify, develop, and characterize a space of 
algorithms that exploit the novel properties of 
spiking neural network hardware architectures 
(e.g. fine-grain parallelism, sparse activity, high 
degrees of connectivity) to deliver orders of 
magnitude gains in efficiency compared to the 
leading conventional algorithms. 

2) Guide the iterative development of 
neuromorphic, non-Von Neumann architectures 
with the algorithmic and architectural insights 
that arise in the pursuit of goal (1). 

3) Prototype real-world applications of Intel’s 
neuromorphic silicon to assess the practical 
value that this architecture may provide if 
commercialized. 

4) Develop an ecosystem of researchers and 
developers who can routinely and successfully 
apply neuromorphic silicon to solve new 
problems, paving the way to a broad 
commercial ecosystem that can support the 
proliferation of this technology into the world. 

 
Intel hopes its network of INRC members will advance 
the state-of-the-art understanding of neuromorphic 
learning algorithms, demonstrating the value of this 
emerging technology for a wide range of application 
domains.  Most of the enabling software and results from 

these efforts will be contributed to the public domain in 
the form of publications and open source software. 

As a commercial enterprise, it’s difficult for Intel to 
prioritize the advancement of neuroscience 
understanding among its goals for the INRC, but we do 
hope and expect this to be an important side benefit of 
the community’s work.  To the degree that such pursuits 
are synergistic with our goals above, Intel may offer 
support in the form of funding, letters of support, and of 
course access to our Loihi systems.  To date, we’ve 
engaged with a number of groups whose primary 
motivation is to model biological systems for 
neuroscience research purposes.  

2. INRC Engagement 

As of Q1 of 2019, Intel has formally engaged with over 50 
active research projects across 47 groups.  The teams 
span 31 universities, five U.S. national labs, four 
nonprofit research institutes, and five industry partners.  
INRC academic partners include 18 in the U.S., one in 
Canada, 10 in the E.U., and two in Asia.  To date, we’ve 
allocated approximately two thirds of INRC’s $750k/year 
funding over three years to 12 of these academics 
groups. 

Intel has hosted two week-long INRC workshops, one in 
the Fall of 2018 located in Reykjavik, Iceland; the second 
in January of 2019 in Portland, Oregon.  A number of 
travel grants were provided to students to support their 
attendance at these two workshops, which drew 65 and 
over 90 researchers respectively.  Additionally, Intel has 
hosted or supported extended tutorials at numerous 
conferences over the past year (e.g. at the NICE 
workshops in 2018 and 2019, ICONS, Riken, Telluride, 
and others).  Our third INRC workshop is planned for 
October, 2019 in Munich, Germany. 

We continue to accept new proposals, especially for 
unfunded access, on an ongoing basis.  Interest 
continues to rise, with seven new project proposals 
received in Q1 of 2019.  Our Loihi remote cloud systems 
now have over 160 user accounts.  
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Loihi Neuromorphic Systems and Software 

1. Kapoho Bay 

Intel has developed a modular small-scale system, code 
named Kapoho Bay, for deploying Loihi in portable or 
embedded environments.  The system is integrated in a 
USB stick form factor, shown right, providing a host 
computer with a Loihi-accelerated subsystem comprising 
up to 256,000 spiking neurons and 256 million synapses 
(i.e. two Loihi chips).  Kapoho Bay supports a variety of 
peripheral interfacing options: GPIO pins, I2C, and a DVS 
AER interface supporting the IniVation DAVIS 240C DVS 
camera. 

A peripheral toolkit is under development for Kapoho 
Bay, expected to be released later in 2019, that will allow 
researchers to enhance an I/O FPGA on one of the 
Kapoho bay boards with hardware support for new 
sensors and actuators.  This capability will allow Kapoho 
Bay boards to be embedded in larger systems in order to 
support diverse mobile deployments, e.g. on a robot or 
drone. 

2. Nahuku FPGA Mezzanine Card 

For networks requiring higher neuron counts than what 
Kapoho Bay can support, Intel has developed an 8- to 32-
chip Loihi carrier card, code named Nahuku, intended to 
interface with the Intel® Arria® 10 SoC Development Kit  
via the kit’s FPGA Mezzanine Card (FMC) connector.  
Depending on the number of populated Loihi chips, a 
Nahuku FMC system implements up to 1-4 million spiking 
neurons and 1-4 billion synapses. 

The Arria 10 SoC includes a dual-core ARM subsystem 
which runs an Ubuntu distribution of Linux.  Intel’s Nx 
SDK software runs on the Arria 10’s internal ARM CPU 
and connects to the Nahuku mesh of Loihi chips via the 
ARM AXI Bus.  The user interacts with the system via the 
Arria 10’s Ethernet connection, calling the Nx SDK on the 
ARM to set up and execute a specified spiking neural 
network. 

The Arria 10 Dev Kit supports a wide range of interfaces 
that allow users to connect sensors and other 
peripherals to the Loihi chips, either by developing 
software on the ARM CPU or by mapping custom 
hardware logic into the Arria 10 FPGA.  Intel offers a DVS 
Adapter FPGA Mezzanine Card that may be inserted into 
a second FMC connector on the Arria 10 Dev Kit that 
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provides connectivity to the IniVation DAVIS 240C event-
based camera. 

Currently, Intel hosts a pool of Nahuku-enabled Arria 10 
systems in its datacenter available for remote use by 
INRC members.  Users log on to Xeon servers and then 
launch their Loihi jobs via the SLURM job scheduling 
system into the attached pool of Nahuku neuromorphic 
systems.  A similar cloud-based Loihi service has been set 
up at Argonne National Labs for DOE researchers. 

3. Pohoiki Springs 

Pohoiki Springs is our largest Loihi system under 
development, expected to be available for external use 
in Q3 of 2019.  It is intended for deployment in a standard 
19-inch datacenter rack.  The rack-mounted chassis 
includes a Xeon host processor, dual power supplies, and 
a backplane with connectivity for up to 24 Nahuku 
boards and three FPGA mesh interface cards.  In its 
maximum configuration, one Pohoiki Springs system will 
support up to 768 Loihi chips, providing up to 100 million 
neurons and 100 billion synapses.  Although it will be 
possible to map very large spiking neural networks into 
Pohoiki Springs, its parallelism is equally intended for 
two other use cases: (1) simultaneous use by a large 
number of remote users, and (2) acceleration of 
evolutionary optimization algorithms that require 
spawning large numbers of networks whose fitness will 
each be evaluated concurrently. 

 

4. Neuromorphic Software Development Kit 
(Nx SDK) 

Intel has developed a software development kit, named 
Nx SDK, that is needed in order to compile and run 
spiking neural networks (SNNs) on Loihi systems.  Nx SDK 
presents a Python API that will be familiar to those with 
experience developing for other spiking neural network 
simulators and frameworks.  The Nx SDK spans up to 
three software layers running on CPUs at different 
proximities to the Loihi mesh of neuromorphic 
resources: 

1. Embedded layer: SNN-interfacing processes 
that run on the embedded x86 processors in 
each Loihi chip. 

2. Host layer: Processes responsible for 
communicating data in and out of the Loihi chip 
mesh. 

3. Super-host layer: User-interface code that 
compiles user-specified networks into the Loihi 
chips and provides execution feedback to the 
user (e.g. in the form of graphical waveforms). 

In some cases, such as for Kapoho Bay, the Host and 
Super-host layers are combined and both run on the 
system’s USB host CPU.   Nx SDK requires Python 3.5.5 
and Ubuntu (16.04 LTS), which may be run inside a super-
host virtual machine. 

Figure 2. Nx SDK Architecture 
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Figure 2 shows the high-level architecture of Nx SDK. 
Today, most users develop for Loihi systems using the Nx 
Net API, which provides abstractions for constructing 
spiking neural networks similar to those of the Brian, 
Nengo, or PyNN frameworks.  Users may also define 
conventionally coded sequential processes, called Snips 
(for “Sequential neural interfacing processes”).  Snips are 
intended to interact closely with the defined spiking 
neural network, often performing encoding and 
decoding functions necessary to convert real-world data 
to and from spatiotemporal spike patterns.  Snips may 
also implement more complex functions such as 
background structural plasticity algorithms. 

The NxSDK compiler maps the user-specified snips and 
spiking neural network into the underlying 
heterogeneous computing substrate.  Spiking neurons 
are allocated to the optimal neuromorphic cores across 
the multi-chip Loihi mesh in order to maximize resource 
utilization.  Each snip is mapped to the CPU nearest to its 
associated SNN resources with sufficient resources to 
satisfy the snip’s memory and performance 
requirements.  All communication between snips and 

spiking neurons occurs either over spike messages or 
generalized message-passing channels. 

NxSDK is intended to be extended upward to higher-level 
computational modules that abstract and hide the 
complexity of snips and spiking neural network 
dynamics.  To date, a number of modules have been 
released, e.g. the Locally Competitive Algorithm (LCA) for 
solving LASSO optimization problems [20] and a 
constraint satisfaction solver [21].  Many other will 
follow, including those independently developed and 
released by INRC members. 

As shown in Figure 2, we expect to integrate Nx SDK with 
a variety of third party APIs and machine learning 
frameworks.  To date, integration with Nengo [14] has 
been implemented, which also offers a facility to train 
deep spiking neural networks using TensorFlow.  
Preliminary support for the Human Brain Project’s 
Neurorobotics Framework [16] has also been 
demonstrated.  Others will follow over the coming 
months. 
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