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Subject 

Intel’s Neuromorphic Computing Lab (NCL) seeks proposals for research projects 
that advance neuromorphic technology towards real-world state-of-the-art 
applications. We are especially interested in projects which use and improve the 
open-source Lava framework as well as neuromorphic algorithms and application 
demonstrations targeting Intel’s Loihi 2 chip.  We encourage researchers to publish 
openly and help expand the neuromorphic research community and accelerate the 
commercial adoption of neuromorphic technology. 

Accepted proposals will receive access to Intel’s cloud-based or on-premises 
neuromorphic systems depending on project requirements and can be considered 
for upcoming funding opportunities. 
 
 
 
 
 
 
 
Key Dates 
Info Session and Feedback from Intel: 

Principal Investigators may attend an Info Session about this Request for 
Proposals on 7 February 2023 at 8:00 – 9:00 AM PST. 

INRC Spring Workshop: 

Intel will host a Spring 2023 workshop featuring the latest research from 
Intel Labs and members of the INRC. The workshop will provide in-depth 
technical training on Intel Loihi and Lava. Visit neuromorphic.intel.com for 
more info and to plan your submission. 

Proposal Submission Deadline:  

Proposals for funding are due before 1 March 2023. 

Proposals for hardware access only will be considered at any time. 

How to Submit:  

Proposals should use the latest INRC Proposal Template available on the  
Join the INRC webpage. Completed proposals should be emailed to 
inrc_project_proposals@intel.com. 

If you are not a current member of the INRC, please apply to join the INRC 
by following the above link. 

Contact for Questions:  

For all inquiries related to this RFP or the INRC, please contact 
inrc_interest@intel.com. 
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Introduction to the INRC 
In 2018, Intel’s Neuromorphic Computing Lab launched the Intel 
Neuromorphic Research Community (INRC). This collaborative 
research program is open to all academic, government, and 
industry research groups interested in exploring neuromorphic 
architectures for mainstream computing applications. In support 
of INRC projects, Intel provides Loihi research hardware and 
software to INRC members to evaluate the capabilities and 
advantages of neuromorphic approaches in a rigorous manner 
with real-world measurements and demonstrations.  

In support of INRC research, Intel offers remote login access to 
Loihi systems and software development tools.  Intel also loans 
physical hardware systems to teams that require physical access 
for their proposed research. 

Intel hosts regular workshops and meetings open to INRC 
project participants to share results, discuss challenges, and 
provide hands-on training.  A monthly online forum features 
presentations from Intel and invited researchers to share 
progress and new developments. Semi-annual INRC workshops 
bring the community together to meet, share progress, and 

discuss future directions. The INRC Spring 2022 workshop 
attracted over 700 registered attendees. 

Intel’s publication, “Advancing Neuromorphic Computing With 
Loihi: A Survey of Results and Outlook,” [1] summarizes the 
findings of the first three years of research with Loihi. 

To encourage growth of the community and convergence at the 
software level, Intel launched the Lava software framework as an 
open-source project on GitHub with permissive licensing.  Lava 
supports cross-platform execution on Loihi hardware and x86 
CPUs, as well as model training on GPUs, and can be ported to 
other platforms. Lava builds on a foundation of channel-based 
event-driven parallel processing with the goal of supporting a 
wide range of neuromorphic programming paradigms spanning 
deep learning to online learning to dynamics-based computing. 
Lava is modular, extensible, and easy to use.  Projects supported 
by this RFP are expected to use, and preferably contribute to, the 
Lava framework. 

 

 

 

Figure 1. SIMPLIFIED VIEW CONTRASTING TODAY'S PARALLEL COMPUTING AND NEUROMORPHIC 
COMPUTING, WITH AI PARADIGMS CORRESPONDING TO EACH ONE. 
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Program Funding 
To date, INRC projects have collectively received several million 
USD in funding from Intel’s Corporate University Research Office 
(CUR). Corporate and government members of the INRC have 
funded over a dozen projects and regularly look to this 
community for partners, demonstrations, and promising 
emerging research directions. 

Intel is now inviting proposals for 1- to 2-year projects that 
address at least one of the key INRC research vectors (RV1 - 5, 
see below) and align with Intel’s strategic priorities in 
neuromorphic computing. Based on the available funding, Intel 
expects typical projects to fund one to two students or 
postdoctoral researchers. Proposals must justify the proposed 
budget in terms of the resources needed to carry out the 
proposed work. 

Intel may share relevant submitted proposals with corporate and 
government members of the INRC interested in sponsoring 
research relevant to their application interests.  Any group may 
opt out of this broader consideration by indicating so in their 
proposal.  

Due to the limited grant funds available, we highly encourage 
researchers to leverage INRC support and membership to secure 
funding from other sources. Proposals outlining specific co-
sponsorship opportunities will be considered favorably. Intel will 
provide letters of support for external funding applications given 
two weeks advance notice and a copy of the relevant proposal. 

Background on Neuromorphic Computing 
Neuromorphic computing aims to apply insights from 
neuroscience to create a new class of computing technology that 
follows the form and function of biological neural networks. The 
goal is to discover a computer architecture that is inherently 
suited for the kinds of intelligent information processing that 
living brains effortlessly support. 

Interest in neuromorphic computing has intensified in recent 
years due to several developments. 

First, the success of artificial neural networks in the form of deep 
learning inspires confidence that biological insights can lead to 
great practical gains in computing and AI. While the 
breakthroughs coming from the deep learning approach are 
impressive and of tremendous practical value, deep learning 
models are facing limits in application scope because of their 
large data, power, and latency requirements. 

Second, the golden era of process scaling that provided 
conventional architectures with steady and massive gains in 
computing power has passed. While process scaling continues 
to shrink transistor sizes, conventional CPU and GPU 
architectures struggle to use ever-increasing transistor counts to 
deliver commensurate gains in application performance and 
energy efficiency. This motivates new architectural approaches 
that can deliver greater application-level performance using 
smaller but slower circuits.  
Finally, the pace of progress in neuroscience has accelerated 
dramatically in recent years, providing a wealth of new 
understanding and insights about the functioning of brains at the 
neuron level.  

Neuromorphic computing represents a fundamental re-thinking 
of computer architecture at the transistor level.  Compared to 
conventional architectures, it is massively parallel, with the 
fundamental unit of computation being a neuron with time-
dependent dynamics, compared to processors executing 
sequential instruction streams in conventional architectures.  
The computation in the brain and in most neuromorphic 
algorithms is an emergent phenomenon, the result of collective 
interactions between simple neural units. In contrast, 
computation in conventional CPU, GPU, and matrix arithmetic 
processors is a precisely sequenced procedure accessing state 
from a shared address space.  Communication in a neuromorphic 
architecture occurs in a peer-to-peer multicast fashion, with 

 
Box 1. Application properties necessary for realizing gains on neuromorphic architectures compared to 
conventional computing architectures. 

• Streaming input data with temporal information structure such as audio, video, or any signals changing on 
microsecond-to-second time scales, especially when events of interest arrive infrequently and unpredictably. 

• A need for fast pattern matching, search, and optimization supporting sub-symbolic processing, combinatorial 
recognition in high-dimensional spaces, and optimizing behavior through emergent neural dynamics. 

• A need for adaptation, fine-tuning, or associative learning in response to changing sensory information or 
environmental conditions.  

• A need for low latency responses, such as in closed-loop control applications, where the time and resource cost of 
batching and vectorization in conventional architectures is unacceptable. 

• Power constrained, where often conventional architectures can achieve low latency at the expense of high power 
consumption. For suitable applications, neuromorphic architectures support both low latency and low power operation. 

• Small to medium AI models. Compared to conventional computing systems, neuromorphic systems contain a 
relatively small amount of aggregate memory, the result of its compute/memory-integrated architecture.  This makes 
Loihi systems generally unsuitable for architectures such as Large Language Models or very deep ResNets. 
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each neuron communicating scalar information to a diverse 
distribution of other neurons.  Communication patterns are 
asynchronous, event-based, and extremely sparse in both time 
and space. 

In a conventional processor, the top-level partitioning of the 
architecture between main memory and execution units leads to 
wide, vectorized datapaths that must stream data through the 
system at high bandwidth to achieve maximum efficiency.  In a 
neuromorphic architecture, neural network weights and 
parameters are always stationary while only sparse data samples 
travel through the silicon. Data representations are low 
precision, often one bit, and all state changes, including weight 
changes, are the result of interactions between locally available 
quantities.  Properties like noise, time-coding of information, and 
high-dimensional distributed data representations are used to 
achieve efficiency, robustness, and other surprising 
computational capabilities. 

Figure 1 contrasts modern parallel computing and 
neuromorphic computing from an abstract architectural 
perspective. From this abstract view, ignoring for now any 
biological motivation, one can appreciate the bottom-up 
promise of the technology: low latency as a result of sparse, 
unbatched, and event-based data processing; resource-efficient 
processing of time-varying sensor input as a result of recurrent 
state updated locally per neuron, highly efficient online 
adaptation and learning as a result of fully localized state 
changes, and overall very low power as a result of its pervasive 
sparsity and activity-gating feedback paths.  On the other hand, 
conventional parallel architectures supporting high precision 
matrix arithmetic are far better suited for offline training of 
differentiable and feed-forward models where sufficient pre-
collected data is available. 

As realized by chips such as the Intel Loihi 2 neuromorphic 
research processor , neuromorphic technology provides value 
for applications characterized by specific properties, shown in 
Box 1.  These loosely correspond to the ecological needs that 
shaped brain evolution in nature.  Rapid responses to sensory 

information allow mobile organisms to evade threats and 
capture prey, while fast learning allows organisms to respond to 
changing environmental conditions and outperform 
competition. Brain matter in nature is extremely expensive in 
both energy and material resources, just as we find in computing, 
so evolutionary pressures have led to designs that minimize 
resource consumption while maximizing behavioral objectives. 
For these applications, Loihi has shown gains in latency and 
energy compared to conventional solutions into the orders of 
magnitude. These results are surveyed in [1] and summarized in 
Figure 2. Notable examples include constraint satisfaction, 
achieving up to 100,000x gains in energy-delay-product 
compared to conventional solutions. 

Conversely, applications that do not exhibit the properties listed 
in Box 1 are unlikely to run better on neuromorphic architectures 
available during the time frame of research projects funded by 
this RFP. 

While a considerable body of results now exists pointing to the 
advantages of neuromorphic technology, the algorithmic 
methods and programming tools needed to realize this value for 
real-world applications continue to limit progress.  To enable 
commercially relevant applications and attract increased 
investment to the field, more attention should be directed to the 
most pressing of these near-term challenges.  That is the 
objective of this RFP. 

Technical Objectives of Research 
Figure 3 defines the complete scope of neuromorphic 
computing research vectors. Although Intel pursues all these 
vectors, we prioritize support for external groups working in 
vectors one through five, with the greatest emphasis on vectors 
two through four. 

Research on neuromorphic algorithms, applications, and 
programming models offer the most promising directions for 
real-world neuromorphic technologies and near-term 
commercial value, as detailed in the sections that follow. Most 

Figure 2. LOIHI RESULTS 
SHOWING RELATIVE GAINS IN 
SOLUTION ENERGY AND 
LATENCY VERSUS REFERENCE 
ARCHITECTURES. SEE [1] FOR 
DETAILS. RESULTS MAY VARY. 
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Intel support and resources will be directed to projects that align 
with these priorities, as they offer the greatest potential for 
success in the neuromorphic research field. 

Proposals seeking funding in the INRC should use the Intel Loihi 
2 hardware platforms and the Lava open-source framework. 
Proposals may take advantage of specific Loihi 2 features, as 
described in Box 2, to achieve the greatest benefits of the 
neuromorphic architecture. A general overview of Intel’s first and 
second generation Loihi chips are available in [2] and [3], 
respectively. The use of common neuromorphic technologies 
will allow results to be rigorously compared across all relevant 
metrics: correctness, precision/accuracy, speed of execution, 
power consumption, and resource utilization. Technical 
objectives should be defined in terms of those metrics such that 
results can be quantitatively assessed. 

Groups seeking funding must articulate an informed, forward-
looking orientation. Proposals should reflect a strong 
understanding of results obtained to date by the INRC or with 
other neuromorphic platforms as documented by [1]. Projects 
should not assume software programming or training 
capabilities that do not yet exist, or else they should present a 
credible plan for developing those tools in Lava and making 
them available to other INRC members. 

Furthermore, projects should accommodate the evolution of 
neuromorphic hardware architectures. Current Loihi and Loihi 2 
chips offer a very flexible foundation for neuromorphic research, 
but changes in future systems and software are likely and project 
plans should be reasonably able to accommodate these. 

Our broader objective is to accelerate progress in a collaborative 
fashion, so we wish to see functional, open-source code 
contributed to Lava (See Box 3) to allow others to replicate and 
advance on progress. 

RV1: Theory and Neuroscience 
The long-term success of neuromorphic technology depends on 
sound theoretical foundations that support robust algorithms 
and applications. As a new computational paradigm differing 
from conventional computer architectures in fundamental ways, 

neuromorphic computing currently lacks unifying theoretical 
frameworks, such as the Turing Model, which leads to a highly 
fragmented exploration space. 

Past INRC RFPs have supported theoretical work in the areas of 
computational complexity frameworks, characterization of 
neural dynamics, and unified engineering figures of merit.  While 
further work in these areas could be important for progress in 
the field, below are a few example areas where neuromorphic 
theory is currently lacking: 

• Theoretical analysis of different information coding 
strategies based on application objectives. For example, 
when to use temporal coding, phase coding, rate coding, 
population coding, plus generalizations to other coding 
strategies such as sigma-delta with graded spikes. 

• Holistic models of fault tolerance and recoverability for 
SNNs, including the effects of noise and stochastic 
synapses. 

• Characterizing the computational tradeoffs and complexity 
analysis associated with promising neuromorphic  
frameworks such as vector symbolic architectures [4] and 
dynamic neural fields [5]. 

• Theory-driven investigation of the “accuracy gap” for deep 
SNNs trained with surrogate gradient backpropagation. 

RV2: Algorithms 
Central to the advancement of neuromorphic computing is the 
development of algorithms that leverage the novel features of 
neuromorphic architectures and satisfy their hardware 
constraints. These are algorithms that utilize sparsity of 
connectivity, communication, and activity. They should include 
dynamically evolving state within each neuron that is excited by 
inputs and inhibited through feedback loops. Learning 
algorithms have access to local state variables at the neuron and 
the synapse as well as synaptic traces for encoding granular 
reward, error, or neuromodulatory signals. Novel neuro-inspired 
features such as stochasticity, structural plasticity, event-driven 
computation, and temporal information coding can also provide 
unique advantages on neuromorphic architectures. 

Figure 3. NEUROMORPHIC RESEARCH VECTORS. BLUE VECTORS FALL WITHIN THE DOMAIN OF INRC-
FUNDED RESEARCH. RED ARE OUT OF SCOPE. 
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Algorithms research proposals should fully consider all recent 
learnings [1] and should include a plan for rigorous 
benchmarking to current state-of-the-art conventional 
solutions. The value of the proposed algorithms should be 
motivated in the context of a specific application and associated 
real world constraints, informed by the challenges and 
opportunities facing neuromorphic technology deployment. 

RV2 projects should advance beyond theory and modeled 
examples to provide generally usable software modules in Lava 
targeting Loihi and other future neuromorphic platforms. Others 
should be able to easily apply results to their own problems, 
preferably over a range of different application domains. 

The following areas are of particular interest. 

Novel neuromorphic neuron models 

Compared to the stateless neuron models of deep learning (e.g., 
ReLU), biologically inspired neuron models include time-varying 
state variables.  In neuromorphic hardware, these neurons offer 
several computational advantages. They introduce time-varying 
behavior into a network, allowing the network to efficiently 
encode time-varying input signals, to make predictions, and to 
produce complex output sequences.  

Loihi 2 implements neurons using programmable neuron cores 
that support a broad class of neuron models (see Box 2).  These 
models can have nearly arbitrary internal dynamics and support 
both spike-based communication and continuous transmission 
of graded information. The former sparsifies long-range 
communication with event-based messages triggered by some 
spike condition; the latter provides high-precision computation 
within a local cluster of neurons, where the cost of 
communication and fanout are low. 

Generally, we see significant promise of this algorithmic 
approach for demonstrating more compact, intelligent, and 

efficient nonlinear signal processing solutions, e.g., for audio and 
radio frequency processing. 

In addition, significant potential has been demonstrated by 
networks composed of stochastic neurons. These models have 
been used to represent Bayesian or more general graphical 
models [6] and can solve a range of hard problems such as the 
computation of marginal probabilities, or maximum likelihood 
[7]. These models have for instance been applied to solving 
constraint satisfaction problems with SNNs [8] and could offer 
one possible realization of causal graphical models for efficient 
continual learning. Such stochastic spiking networks are now 
demonstrating significant outperformance compared to classical 
approaches on conventional hardware architectures [1]. 

Opportunities for progress could include advancing stochastic 
SNN theory, combining stochastic networks with other 
components such as offline-trained DNNs, and extending 
stochastic networks to areas such as probabilistic inference and 
model predictive control. 

Computing with neurodynamics 

To date, the best results using Loihi have been achieved in 
networks that solve problems that identify optimization and 
search solutions using network-level spiking neuron dynamics. 
In these networks, spikes have the effect of dimension-wise 
prioritizing asynchronous gradient descent steps, leading to 
orders-of-magnitude gains in speed and efficiency compared to 
traditional solutions for same problems. Examples include Lasso 
regression, constraint satisfaction, quadratic unconstrained 
binary optimization, shortest-path graph search, and similarity 
search, with other promising applications on the horizon to 
problems such as quadratic programming, integer linear 
programming, Subspace Locally Competitive Algorithm [9], 
Minimax optimization [10], and probabilistic inference [6] [7] 
[12] [13]. 

 
Box 2. Features of Intel’s Loihi 2 neuromorphic hardware architecture. 

• Programmable neuron models. Intel’s first-generation Loihi processor supported a leaky-integrate-and-fire (LIF) 
spiking neuron model with the ability to aggregate neural units into multi-compartment dendritic trees to communicate 
graded neuron state between compartments. Intel’s Loihi 2 neuromorphic processor generalizes this capability, with 
fully programmable neuron models that support a broad range of differential equations for state variable dynamics, 
configurable spike conditions, and state machines. Supported neuron models include adaptive threshold LIF, Resonate-
and-Fire, Hopf resonators, sigma-delta coding, and many others. See for examples. 

• Graded spikes. Many SNN chips, including Loihi 1, can only send binary-valued spike messages between neurons. While 
binary spikes can perform a remarkable amount of computation -- as best demonstrated by the brain -- in digital 
hardware, spikes can be generalized to carry integer-valued payloads with little cost in performance or energy.  Loihi 2 
supports such graded spikes, enabling more complex event-based messaging while preserving the sparse and time-
coded communication of SNNs and providing greater numerical precision. 

• Three-factor learning rules. Loihi 1 primarily supported two-factor learning rules (involving pre- and post-synaptic 
traces), with a third modulatory term set in a diffuse manner from graded “reward” broadcasts. Loihi 2 leads the next 
generation of neuromorphic chips supporting more targeted and localized third factors in learning rules. As an example, 
these may be error signals mapped to specific neurons, available as third factors in synaptic learning rules. 
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One important open challenge involves hierarchically 
composing such optimizing networks to solve larger problems 
or to solve the problems with higher precision than offered by 
the state variables of single neurons.  Conventional multilevel 
solver techniques (e.g., [14]) may be of value here, in addition to 
insights from neuroscience. 

Online learning 

In the neuromorphic research field, much attention has been 
directed to learning algorithms that approximate 
backpropagation (or gradient descent in parameter space) with 
online learning rules that respect locality and other 
neuromorphic architectural constraints . Despite encouraging 
progress, major hurdles remain to be resolved before these 
approaches can yield practical value.  While these algorithms can 
operate continuously, they rely on unrealistic assumptions about 
the statistics of real-world data, such as independent identically 
distributed (iid) samples or highly controlled training scenarios. 
Furthermore, operating online doesn’t improve the data 
efficiency of backprop, which is a fundamental challenge for 
many edge applications. 

Several example approaches of interest are described include 
on-chip few-shot transfer learning , surprise-driven learning 
such as CLAPP  or Contrastive Predictive Coding , and stochastic 
learning with bounded resources such as complex synapses to 
extend memory lifetime, or replay for pinning significant 
memories. 

Vector Symbolic Architectures 

Vector Symbolic Architectures, also known as Hyperdimensional 
Computing algorithms, have shown great promise for 
neuromorphic systems with algorithms such as the resonator 
network . Recent applications to scene understanding and visual 
odometry  have highlighted the potential for achieving state-of-
the-art results with far more compact and explainable networks 
than those trained with deep learning. However VSA 
demonstrations to date tackle small-scale problems with dense 
vector encodings that do not easily scale to hyperdimensional 
sizes. 

To realize the potential of VSAs as powerful symbolic framework 
for programming powerful algorithms on neuromorphic 
hardware, Intel Labs is developing a lava-vsa library that will 
support a variety of different vector encodings, including those 
exploiting sparsity for efficient and scalable mapping to spiking 
hardware.  We are interested in funding credible proposals for 
productive collaboration in this domain. 

Offline training and network optimization  

A number of backprop-style offline training tools for spiking 
neural networks have emerged over the past few years. However, 
in most cases, technical limitations have limited the networks 
trained with these tools to relatively shallow and simple 
architectures, and small dataset sizes, compared to modern 
deep learning. Model training convergence and performance 
both suffer significant disadvantages that limit the broader 
applicability of these methods. Innovations in offline 

optimization and significant improvements to training 
algorithms are needed to reach performance that is competitive 
with standard ANNs. Promising approaches include Hessian-
based methods, spike time-based gradients, use of novel neuron 
models and features to ease training, among others. 

Meanwhile, we see strong evidence of a barrier to the 
performance of deep SNNs with backprop-based offline training. 
Spike-based neural network models are fundamentally not 
differentiable, so the surrogate gradient methods deployed in 
lava-dl and other SNN deep learning toolchains fundamentally 
involve approximations that introduce errors compared to 
training conventional ANNs. To overcome this, we are very 
interested in supporting new ideas and approaches to the 
problem of offline supervised training, including the Forward-
Forward algorithm [28], evolutionary methods, and neural 
architecture search. 

Neuromorphic transformers 

In recent years, the advent of transformers has led to 
breakthroughs in many areas of artificial intelligence, from 
natural language processing to computer vision and multi-modal 
understanding. For sequential data processing applications, 
transformers have surpassed the performance of recurrent 
neural network models, especially in their ability to scale and 
train successfully with very large data sets. 

Today’s transformers are ill-suited for directly mapping to 
neuromorphic architectures. As feed-forward models operating 
on vectorized sequence data, they are designed to run best on 
conventional data parallel architectures with batched input and 
vast amounts of memory.  However, at the heart of transformers 
are constructs that evoke neuro-inspired mechanisms: an 
attention mechanism closely related to associative memories 
and Hopfield networks [29], and positional encoders compatible 
with resonate-and-fire spectral transforms [30].  These 
properties suggest that neuro-inspired transformer models may 
be developed that operate on input data temporally, projecting 
recurrent state to attractor-based memory mechanisms 
achieving state-of-the-art speed and efficiency by computing 
with neurodynamics. 

Development of such transformer-inspired neuromorphic 
models that are of great interest to Intel for funding, taking 
recent efforts [31] [32] into consideration. 

RV3: System Applications 
We seek real-world application demonstrations at the 
intersection of research and today’s best engineering solutions. 
Over the long term we see a vast domain of applications for 
neuromorphic devices, but Intel is primarily focused on 
supporting applications that are commercially relevant and 
viable using today’s neuromorphic hardware and algorithms. 

To substantiate commercial relevance, we encourage application 
projects that include participation, support, or co-investment 
from industry or government organizations.  For example, this 
could be a corporate advisor, use of data from an end customer, 
or integration into a commercial system platform. For highly 
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compelling proposals, Intel can partner and co-develop 
technical assets to achieve a successful outcome. 

Application proposals should clearly describe the value of the 
neuromorphic solution in relation to limitations of current 
solutions and how specifically neuromorphic technology will be 
used.  Prior evidence that one or more project members possess 
significant technical expertise in the application domain is 
expected for credible proposals in this RV. Proposals should 
articulate the commercial impact of a successful outcome, based 
on measurable and significant advances the project will 
demonstrate over the current state-of-the-art. 

Promising categories of System Applications research include, 
but are not limited to: 

Audio processing, especially applications that need to operate 
continuously in an always-on fashion at low power levels and 
where a fast response and online adaptation is needed, e.g. 
wake-on-voice, dynamic noise suppression, automatic speech 
recognition, sound detection and localization, speaker 
identification, and blind source separation. 

Signal processing for security, failure detection, and sensor 
networks. Examples range from radar, sonar, biometric, and 
turbine monitoring to cybersecurity intrusion detection to 
sensor network processing for earthquake prediction and oil 
field analysis. 

Video processing, especially detection and classification of 
events and activities with a dynamic signature within the input 
video, such as activity recognition, target tracking, or novel 
object acquisition. 

Human-machine interfacing: gesture recognition for cursor 
control or sign language interpretation, gaze tracking, speech 
processing, tactile/haptic sensor processing. Brain-computer 
interfaces (EEG, EMG, direct nerve/neural probes) that 
demonstrate real-world advantages for gaming and people with 
disabilities. Additional value may come from applying 
neuromorphic compute to wireless interfaces in this domain. 

Routing and scheduling, such as NP-Hard vehicle routing 
problems for logistics, task and job scheduling in data centers, 
and traffic routing for networks. These types of problems 
effectively leverage neuromorphic optimization capabilities. 

Real-world robot deployments, including perception and 
control of delivery robots, warehouse robotic systems, 
healthcare robots, and collaborative robot applications. 

Aerospace and satellite-based applications, including radio-
frequency signal processing and telecommunications, trajectory 
control, low SWaP multispectral image processing. 

RV4: Programming Models and Frameworks 
The maturity of software in the neuromorphic field remains low, 
and this creates a formidable barrier to industry adoption of 
neuromorphic technology. Code sharing between groups is 
minimal, and published examples generally are difficult if not 
impossible to replicate by others. There are very few examples 
of composability, abstraction, and modularity in the algorithms 
studied and published.  While some promising frameworks have 
open-source code, prohibitive licensing terms limit widespread 
adoption and community-wide contribution. Intel launched the 

 
Box 3. Open-Source Lava Framework for Neuromorphic Computing 

Lava is an open-source software framework to develop applications for neuromorphic hardware architectures. It provides 
developers with the abstractions and tools to develop distributed and massively parallel applications. These applications can 
be deployed to heterogeneous system architectures containing conventional processors as well as neuromorphic chips that 
exploit event-based message passing for communication. The Lava framework comprises high-level libraries for deep learning, 
constrained optimization, and others for productive algorithm development. It also includes tools to map those algorithms to 
different types of hardware architectures. 

• Composable Processes with Efficient Event-Based Message Passing. Lava applications consist of a connected graph 
of processes mapped to a heterogenous execution platform including both conventional and neuromorphic 
components. Messages between Lava processes vary from asynchronous single-bit spikes to buffered packets with 
arbitrary payloads. 

• Extensible Libraries through Multi-Backend and Multi-Abstracton Compilers. Lava supports a wide range of 
application programming paradigms such as offline deep learning , attractor networks and hyperdimensional 
computing, and highly efficient mathematical optimization. 

• Easy to use and extend Python code. For the broadest possible adoption among neuromorphic developers, all libraries 
and features in Lava are built in Python and flexibly interface with external tool such as ROS, PyTorch, or Brian. Lava is 
free and open-source on GitHub. 

The Lava Extension for Loihi (lava-loihi) is a proprietary package developed by Intel which offers high-performance Lava process 
execution on Loihi 2 systems. The extension is offered free of charge to all INRC members, and contributions to the extension 
are encouraged for research teams with sufficient neuromorphic software experience. 

Visit https://github.com/lava-nc for more information and to get started. 
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open-source Lava framework as a solution (See Box 3 “What is 
Lava?”). 

With this RFP we hope to encourage developers with diverse 
backgrounds and interests to improve and extend the Lava 
framework. By bringing new ideas and perspectives to the 
software challenges, we see opportunities for great gains in areas 
that are bottlenecks to progress today: developer productivity, 
training efficiency, system composability, and libraries for 
powerful features like structural plasticity and evolutionary 
optimization. 

Beyond the immediate priority of building out and optimizing the 
central capabilities of the Lava framework, we see several long-
term compelling directions for Lava development. A few 
examples are listed below. We welcome the research community 
to take the lead in these areas with support from Intel. 

Development of Domain-Specific Languages (DSL) spanning 
the levels of the neuromorphic computing stack. The goal might 
be to unify the various levels of abstraction, providing 
developers a consistent experience when working from low-
level hardware configuration up to behavioral specification, or it 
may take a narrower focus on the end-user/application layer and 
maximize the efficiency of specifying useful applications. 

Porting Lava to other neuromorphic architectures. The current 
Lava compiler and runtime support execution across several 
architectures, including Intel CPUs, RISC-V processors, and Loihi 
neuro cores. To encourage convergence on a common 
framework, transparent benchmarking, and the greatest 
possible breadth, Intel welcomes efforts to extend Lava’s 
support to other architectures, both neuromorphic and 
conventional.  Support for GPU and FPGA backends is 
particularly relevant for this RFP, e.g. by implementing support 
for OpenCL. 

Developer Productivity and Experience Improvements 
including developer tools, graphical user interfaces, 
performance profilers, and interfaces to established packages. 
This type of project should provide value to the existing 
community and/or extend the usefulness of Lava and Loihi to 
new user communities. In addition, projects which make 
significant contributions to improving the neuromorphic 
developer experience by investigating and solving for limitations 
of the Lava software platform are encouraged. 

RV5: Event-Based Interfaces 
Over the past several years, event-based vision sensing 
technology has seemingly matured with the advent of 
commercially available sensors and large investments from 
numerous industry and government organizations. 
Neuromorphic processing of event-based sensor output 
promises many advantages over conventional architectures, yet 
algorithmic and hardware scaling challenges limit the near-term 
commercial viability of this combination of technologies.  We 
view some of these challenges as fundamental, exacerbated by 
the pixel-level granularity of features produced by today’s event-
based sensors. 

We are interested in supporting fundamental research that 
addresses these pain points: (1) application-driven modeling of 

future sensor architectures that tightly integrate novel 
photodiode sampling circuits with neuromorphic processing, 
both near and far; (2) novel spatiotemporal filtering techniques 
prototyped on Loihi and/or FPGAs that extract meaningful 
features with a minimum of parameters and compute cost; (3) 
feedback-driven attention and active sensing mechanisms that 
improve the speed, efficiency, and resource needs of visual 
inference and learning. 

Beyond vision sensors, Intel may consider funding and offering 
in-kind support for interface and hardware engineering projects 
demonstrating the value of novel event-based sensor and 
actuator technologies, such as electronic skins, cochlea-inspired 
audio processing, muscle-like actuators, and wireless interfaces. 

Research Proposal Process 
The process for responding to the RFP and joining the Intel 
Neuromorphic Research Community is outlined below. 

Note: only academic groups will be considered for funding under 
this RFP. However, commercial and government organizations 
can apply to Join the INRC and use Loihi hardware. 

1) Submit your proposal online using the application here 
Join the INRC. To be considered for funding, you must 
select the “Research (PI)” membership category. 

2) Intel will review submitted proposals and contact you with 
any requests for additional information, and to share our 
funding determinations. 

3) If your proposal is accepted, an INRC Participation 
Agreement must be executed between Intel and all 
institutions participating in the proposed research. See the 
section below for more info on this agreement. Once this is 
executed, you will be granted: 

• Remote access to Loihi via the Neuromorphic 
Research Cloud (NRC). 

• Access to the Lava extension for Loihi, Intel’s 
proprietary plugin for running Lava models on Loihi 
hardware platforms. 

• Physical access to loaned Loihi hardware systems as 
needed for the research project. 

4) Conduct your research and participate in the community. 

5) Share your progress, results, and feedback in INRC events. 

Further guidance will be provided upon receipt of a project 
proposal.  Feel free to send questions at any time to 
inrc_interest@intel.com.  

Eligibility 

We welcome groups of all types and locations to submit research 
proposals and engage in the community, subject only to U.S. 
export control laws. 

Intel research grants are only offered to academic research 
groups. 

Proposal Submission 
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Along with this RFP, Intel provides an INRC Project Proposal 
Template that should be filled in with the information and 
documentation required from respondents seeking funding.  
Refer to that document for detailed guidance on what 
information to include in your INRC project proposal, while 
preserving the template structure.  A proposal may be rejected if 
it does not include the required information and documents. 

For projects not seeking funding, respondents may submit 
project plans in any format as long as all required information is 
covered. 

Some recommendations: 
• Delete all commentary and guidance text from the 

template document. 

• Strive for brevity. 
• Feel free to submit more than one proposal. 
• Keep the scope of each project narrowly defined and 

limited to a single research vector. 

Please note that we are unable to receive proposals that are 
provided under an obligation of confidentiality. Proposals 
should therefore include only public information. If you 
represent a corporate entity with proprietary IP considerations, 
please contact us prior to submitting a proposal. 

INRC Participation Agreement 

To provide INRC members access to pre-production 
neuromorphic research hardware, Intel requires each 
organization participating in a proposal to execute a legal 
agreement covering the technology license, research results, 
confidentiality, and liability. Below is a plain-language summary 
of the intention of this legal document. The agreement: 

1. Is executed between Intel and the research member’s 
organization, not the individual. It will automatically cover 
new project members and can be updated to cover new 
projects. It must be signed by an authorized legal 
representative. This is often not the project PI. 

2. Provides a license to use Intel’s pre-production hardware 
and associated software (“Lava extension for Loihi”) for the 
proposed research. 

Note that all general Lava software on GitHub is provided 
under BSD-3 and LGPL-2.1 licensing, so you are free to use 
that code without a signed participation agreement. 

3. Provides Intel a license to use project results. This does not 
transfer ownership or restrict your ability to use the 
research, except that you agree to report back to Intel on the 
research and allow Intel to use those reported results. 

For example, in the course of your project, you might 
measure the performance of the Loihi chip while running a 
model for sorting jelly beans. Intel asks that you report these 
results, and Intel may use them to promote Loihi or improve 
future devices. 

4. Requires researchers to provide Intel an opportunity to 
review publications prior to release and request the removal 
of any Intel Confidential information. 

5. Covers Intel and the research member under a simple non-
disclosure agreement. This allows either party to share 
confidential information with written notice and ensure the 
other party won’t share that information further. This helps 
Intel provide early access to technology roadmaps and 
benchmarks and helps researchers to get feedback on 
preliminary results or project ideas. 

6. Confirms the rights of members and Intel to publish 
research findings and sets out a simple process to avoid 
accidentally publishing confidential information. 

7. Includes terms and conditions for remote access to Intel’s 
neuromorphic research cloud, such as account security and 
tech support access. 

Intel appreciates the diverse nature of member organizations 
and has designed the participation agreement to be consistent 
with industry standards and very permissive, while still 
protecting both the member and Intel. Modifications to the 
agreement are generally not permitted. 

Progress Updates and Results 

Once your INRC research project is approved and underway, 
Intel collects quarterly updates on your progress and results. 
These updates enable us to promote the research of the 
community and share exciting results with the press and analysts 
to encourage greater external support for your work. Intel also 
invites members to present their results at regular INRC Forums 
and semi-annual INRC workshops. 

Intel supports and encourages publishing results in public, peer-
reviewed forums.  We will do our best to support live 
demonstrations and independently hosted hands-on workshops 
using Loihi hardware systems, subject to U.S. export control, 
security, availability, and other constraints. 

Loihi Hardware Access 
Intel provides two forms of access to Loihi-based neuromorphic 
systems and software to use in your research: 

Neuromorphic 
Research Cloud 
Most members of the 
INRC are provided 
remote access to a pool 
of Loihi systems 
through the 
Neuromorphic 
Research Cloud. 
Research members can 

remotely login to virtual machines to program and submit jobs 
to the cloud systems. Members have access to Loihi and Loihi 2 
systems, including 8-chip Kapoho Point systems, 32-chip 
Nahuku systems, and the large-scale Pohoiki Springs system 
supporting up to 100 million neurons. 

The neuromorphic research cloud offers the best platform for 
prototyping, controlled benchmarking, and developing 
neuromorphic systems. Most jobs run immediately, hardware is 
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configured and maintained by the Intel team, and the software 
and environment are easy to set up. 

Kapoho Point 
Intel can provide some 
research groups a 
Kapoho Point system 
for on-site use. This 
system includes 8 
Loihi 2 chips. Due to 
the small form-factor 
and low power 
consumption, it can be 

embedded into edge devices and connected directly to sensors 
or robots and supports a wide variety of research use cases. 

Kapoho Point is best suited for groups that have neuromorphic 
research experience and have developed applications on the 
Neuromorphic Research Cloud. 

Evaluation Criteria for Proposals 
In order of importance, the evaluation criteria for this solicitation 
are as follows: 

1.  Potential contribution and relevance to Intel and the 
broader industry: The proposed research should directly 
support a technology solution that addresses the RVs outlined 
above, leading to technological advances with the potential for 
ongoing technology transfer in collaboration with Intel and the 
broader industry.  

2.  Technical innovation: Proposed solutions of interest should 
clearly push the boundaries of technical innovation and 
advancement. Research that is not of interest in this program 
include incremental advancements to state-of-the-art and 
current design practices. Feasibility of new 
algorithms/techniques should be demonstrated through 
SW/HW implementations. Projects seeking funding should target 
Loihi hardware platforms and the Lava software framework to 
enable algorithmic capabilities and application proof of concept 
demonstrators that others can build on. Technical objectives 
should be defined in terms of quantitative target metrics 
(precision/accuracy, speed of execution, power consumption, 
and resource utilization) as detailed in “Technical Objectives of 
Research.” Funded projects will be enabled with remote access to 
Loihi and future neuromorphic hardware platforms via our 
Neuromorphic Research Cloud (NRC) system and limited access to 
physical loaned systems as needed/approved. See sections on 
Engagement Process and Loihi Hardware and SDK for more 
information.  

3.  Clarity of overall objectives, intermediate milestones and 
success criteria: The proposed Research Plan should clearly 
convey that the PIs have the knowledge and capability to achieve 
the stated research goals. It is understood that any research 
program will have uncertainties and unanswered questions at 
the proposal stage, but a clear path forward in key challenge 
areas must be identified and justified. Teams are expected to 
demonstrate progress toward project goals at quarterly 
milestones and monthly project status updates. The proposal 
should explicitly point out which RV is being addressed, the 

synergy among them if more than one RV, the plan and 
milestones towards building research prototypes, plan for 
ongoing technology transfers, and the anticipated proof of 
concept outcome. The technical suitability of proposals to RV2: 
Algorithms and RV3: Systems Applications will be evaluated 
according to the criteria included in the INRC project proposal 
template, as included for reference in Appendix 1 and Appendix 
2, respectively. Strength of project management will also be 
considered. 

4.  Qualification of participating researchers: The extent to 
which expertise and prior experience bear on the problem at 
hand. Please elaborate on track records of building research 
prototypes (e.g., open-source research code and collateral on 
GitHub) and resulting publications from past relevant projects. 

5.  Cost effectiveness and cost realism: The extent to which the 
proposed work is both feasible and impactful within the 
proposed resource levels will be examined.  

6.  Potential for co-funding: Opportunity for matching grants 
and co-funding with other funding entities, such as SRC, NSF, 
DARPA, NSERC, etc. will be given significant consideration. 

7.  Potential for broader impact: Intel supports the 
advancement of computing education and diverse participation 
in STEM.  Significant consideration will be given to proposals in 
which the outcome of the research can influence the 
development of new curriculum initiatives impacting 
undergraduate or graduate education at the respective 
universities (e.g., exposure to latest industry technologies or 
tools in a classroom).  Proposals are encouraged to elaborate on 
how the proposed work is anticipated to impact student 
education on campus and/or the broader academic community.  

Intel Note: 

As an industry leader, Intel pushes the boundaries of technology 
to make amazing experiences possible for every person on earth. 
From powering the latest devices and the cloud you depend on 
to driving policy, diversity, sustainability, and education, we 
create value for our stockholders, customers, and society. Intel 
expects suppliers in our supply chain to be strong partners in 
making Intel successful through support of Intel's goals and 
commitments to diversity, sustainability, and education. 

In light of Intel’s strong commitment to diversity and creating an 
inclusive environment, in your proposal please address: (a) your 
organization’s commitment to diversity and inclusion with 
respect to race, national origin, gender, veterans, individuals with 
diverse abilities and LGBTQ, (b) a summary of your performance 
in this area and any initiatives you are pursuing, and (c) the 
diverse team you propose for this project, including leadership, 
support, and any subcontracting you propose (such as to 
minority- or women-owned businesses). 

Intellectual Property 
This solicitation affords proposers the option of submitting 
proposals for the award of a grant or gift, a sponsored research 
agreement, or other agreement as appropriate. Intel reserves the 
right to negotiate the final choice of agreement.  



C 

 

 

Revision 5.0 © Intel Corporation  12 

Intel Neuromorphic Research Community RFP NCL 

The final award terms are expected to follow one or the other of 
two high-level intellectual property (IP) approaches. Either: (1) 
Intel and the university will jointly agree that IP developed under 
a grant or gift will be placed in the public domain, including 
offering software under an open-source license, or (2) Intel and 
the university will negotiate a sponsored research agreement 
with more specific IP terms, which, at a minimum, will require the 
university to grant Intel and other sponsors (if any) a broad non-
exclusive royalty free license to foreground IP. 

It is a requirement to follow approach (1) if a project’s software 
development directly enhances the Lava software framework or 
builds on pre-existing INRC shared software libraries. 

Please note that Intel is unable to receive proposals under an 
obligation of confidentiality. All proposals submitted should 
therefore include only public information.   Accepted proposals 
may be published to the INRC member site for community 
reference (i.e. visible to all other members engaged in INRC 
research), specifically sections 1-7.  Groups will have control over 
all such content on the INRC website and may request for their 
project details not to be shared at all in this manner with other 
members, if so desired.  
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Legal Disclaimers 

The issuance of this RFP and the submission of a response by a respondent or the acceptance of such a response by Intel Corporation 
(“Intel”) does not obligate Intel in any manner.  The RFP is not an offer or a contract. Intel is not obligated to contract for any of the 
products/services described in the RFP. Intel reserves the right to: 

1) amend, modify or withdraw this RFP; 

2) revise any requirement of this RFP; 

3) waive any requirements of this RFP that are not material; 

4) seek clarifications and revisions of responses to this RFP; 

5) require supplemental statements or information from any responsible party; 

6) accept or reject any or all responses to this RFP; 

7) extend the deadline for submission of responses to this RFP or otherwise modify the schedule set forth in this RFP; 

8) negotiate potential terms with any respondent to this RFP; 

9) engage in discussions with any respondent to this RFP to correct and/or clarify responses; 

10) require clarification at any time during the procurement process and/or require correction of responses for the purpose of 
assuring a full and complete understanding of a respondent’s proposal and/or determine a respondent’s compliance with the 
requirements of the solicitation; and 

11) cancel, or reissue in whole or in part, this RFP, if Intel determines in its sole discretion that it is its best interest to do so. 

Intel may exercise the foregoing rights at any time without notice and without liability to any respondent or any other party for its 
expenses incurred in preparation of responses hereto or otherwise.  All costs associated with responding to this RFP will be at the sole 
cost and expense of the respondent.  Intel makes no representation or warranty and shall incur no liability under any law, statute, rules 
or regulations as to the accuracy, reliability or completeness of this RFP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


