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Motivation

Off-chip training works well now, but 
efficient learning, also after deployment is especially relevant for 
exploring new environments by agents that need to be autonomous.

But also on earth, on-chip training could reduce ever rising training cost.

Relevant aspects:

- On-chip learning: using Loihi-learning engine

- Online learning: stream of data instead of batches

- Continual learning: learning new data and classes without retraining the whole dataset

- Unsupervised learning: learning without labelled data

Shallow learning will not be enough for state-of-the art deep nets (e.g. transformers).

→ Goal of this project: Proof of concept implementation of the (vanilla) backpropagation 

algorithm fully in the given neural substrate 2
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Spiking backpropagation approaches

New approaches may help to enable a spiking implementation:

● Lee, J. H., Delbruck, T., & Pfeiffer, M., Frontiers in neuroscience 2016

● Dendritic cortical microcircuits – Sacramento, J., Costa, R. P., Bengio, Y., & Senn, W., NeurIPS 2018.

● Eligibility Propagation – Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (TU Graz), on arxiv, 

Jan 25, 2019.

● Surrogate Gradient Learning – Neftci, E. O., Mostafa, H., & Zenke, F., on arxiv, Jan 28, 2019.

● Superspike - Zenke, F., & Ganguli, S.: Neural computation, 2018.

● Feedback Alignment - Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J., Nature comm, 2016.          
Arash, S., Lillicrap, T.P., & Tweed, D.B. Neural computation 2017.
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Backpropagation network
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These weights can be updated 
with delta rule

These weights need error 
backpropagation

Let’s build a network for backprop…



Backpropagation network

5

These weights can be updated 
with delta rule



Backpropagation network
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These weights need error 
backpropagation



Backpropagation network
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Update of a single weight (last layer): 

𝛿 of next layer
“error” Derivative of 

activation function
Layer 
input



Backpropagation network
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Update for a single neuron: 

𝛿 of next layer
“error” Derivative of 

activation function
Layer
input

𝛿 of next layer

Backpropagation to previous layers: 



Why has backpropagation not been implemented on chip before?

● Weight transport problem:  For correct credit assignment, 
feedback weights must be the same as feedforward weights.

● Activation storage problem: Forward activations need to be 
kept in memory for the backward pass.

For a full list of issues see our paper:

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2021). The backpropagation algorithm implemented on spiking 
neuromorphic hardware. arXiv preprint arXiv:2106.07030.

Recommended background:
Liao, Q., Leibo, J., & Poggio, T. (2016). How important is weight symmetry in backpropagation?. In Proceedings of the AAAI Conference on Artificial Intelligence.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews Neuroscience. 9



Routing by gating is vital for neuromorphic algorithms

Wang, Z., Sornborger, A. T., & Tao, L. (2016). 
Graded, dynamically routable information processing with synfire-gated synfire chains. 
PLoS computational biology 10

Synfire-gated SFC route information/spikes through a network

“Taking neurons/layers online based on a schedule”

Classical SFC Literature:
Abeles (1982, 1991)
Hertz (1997)
Goedeke and Diesmann (2008) 
Diesmann et al. (1999)

Gating chain

Gated chain
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● Weight transport problem

→ We can maintain a copy of the weight 
matrices for backpropagation and route 
activity for learning back and forth 
between the forward and backward nets.

● Activation storage problem

→ We can maintain a memory layer and 
route activity back to the relevant layers 
when needed.

Routing helps to solve the main problems

…



Intuition for the learning mechanism

12

spike



Raster plot during training

13→ Binary encoding leads to sparse activation during training and inference

time

neurons



The whole backpropagation network on Loihi
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Literature comparison on MNIST

99% on training set

Accuracy is as good as it 
gets with 400 hidden 
neurons in an MLP.

Energy and latency are 
competitive, but not 
optimized.
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Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2021). 
The backpropagation algorithm implemented on spiking neuromorphic 
hardware. arXiv preprint arXiv:2106.07030.

MNIST 
20x20

Hidden 
400

Out
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Loihi vs. GPU 
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Note that interpretation is limited as the network is rather small



Conclusion

● Proof of principle of the exact backpropagation algorithm in a spiking 
network on Loihi.

● Framework of synfire-gated activity allows us to implement operations 
that are not otherwise suited for SNN (can be used beyond backprop).

● Binary activity encoding leads to high efficiency and sparsity on Loihi (and 
is likely compatible with graded spikes on Loihi 2 allowing for non-binary 
encoded deeper networks).
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Thank you!

More questions?

alpren@ini.uzh.ch

Paper and code: https://arxiv.org/abs/2106.07030
Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2021). The backpropagation algorithm implemented on spiking 
neuromorphic hardware. arXiv preprint arXiv:2106.07030.
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