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Motivation

Off-chip training works well now, but
efficient learning, also after deployment is especially relevant for
exploring new environments by agents that need to be autonomous.

But also on earth, on-chip training could reduce ever rising training cost.
Relevant aspects:

- On-chip learning: using Loihi-learning engine

- Online learning: stream of data instead of batches </

- Continual learning: learning new data and classes without retraining the whole dataset ) 4
- Unsupervised learning: learning without labelled data $§

Shallow learning will not be enough for state-of-the art deep nets (e.g. transformers).
— Goal of this project: Proof of concept implementation of the (vanilla) backpropagation
algorithm fully in the given neural substrate



Spiking backpropagation approaches

New approaches may help to enable a spiking implementation:
e Lee, J. H, Delbruck, T., & Pfeiffer, M., Frontiers in neuroscience 2016
e Dendritic cortical microcircuits - Sacramento, J., Costa, R. P, Bengio, Y., & Senn, W., NeurIPS 2018.

e Eligibility Propagation - Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (TU Graz), on arxiv,
Jan 25,2019.

e Surrogate Gradient Learning - Neftci, E. O., Mostafa, H., & Zenke, F., on arxiv, Jan 28, 2019.
e Superspike - Zenke, F., & Ganguli, S.: Neural computation, 2018.

e Feedback Alignment - Lillicrap, T. P, Cownden, D., Tweed, D. B., & Akerman, C. J., Nature comm, 2016.
Arash, S,, Lillicrap, T.P,, & Tweed, D.B. Neural computation 2017.



Backpropagation network

Let’s build a network for backprop... Th ight be updated
ese weights can be update

with delta rule
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Feedxforward

These weights need error
backpropagation
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Backpropagation network

Update of a single weight (last layer):

Awéj =0, -z’ -7 (2)

|

“error”

]

Layer Derivative of
input activation function

Feed-forward



Backpropagation network

Feedback

Update for a single neuron:
Awj =8, -7 -r'(2")

o]

“error” Layer Derivative of
input activation function

Backpropagation to previous layers:

5 = wgz’j)T 0, —

o of next layer Feed-forward



Why has backpropagation not been implemented on chip before?

Feedback
™~ Error

e Weight transport problem: For correct credit assignment,
feedback weights must be the same as feedforward weights.

e Activation storage problem: Forward activations need to be
kept in memory for the backward pass.
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For a full list of issues see our paper: h — @
D,

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2021). The backpropagation algorithm implemented on spiking
neuromorphic hardware. arXiv preprint arXiv:2106.07030.

W s ) Target
Feed-forward

Recommended background:
Liao, Q., Leibo, J., & Poggio, T. (2016). How important is weight symmetry in backpropagation?. In Proceedings of the AAAI Conference on Artificial Intelligence.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews Neuroscience.



Routing by gating is vital for neuromorphic algorithms

Synfire-gated SFC route information/spikes through a network

SGSC Circuit

S, / Gated chain
@024
S22

/ Gating chain

“Taking neurons/layers online based on a schedule”

Classical SFC Literature:

Abeles (1982, 1991)
Wang, Z., Sornborger, A. T., & Tao, L. (2016). Hertz (1997)

Graded, dynamically routable information processing with synfire-gated synfire chains. Goedeke and Diesmann (2008)
PLoS computational biology Diesmann et al. (1999)
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Routing helps to solve the main problems

Feedback

Weight transport problem

— We can maintain a copy of the weight
matrices for backpropagation and route
activity for learning back and forth
between the forward and backward nets.

Activation storage problem

— We can maintain a memory layer and
route activity back to the relevant layers
when needed.
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Intuition for the learning mechanism

error 6t-o (memory)
error 0,

error 6,

target

output

input

spike

depression potentiation

pal

Target > Output
— Hebbian learning in
potentiation phase

—./

Target < Output
— Hebbian learning in
depression phase
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Raster plot during training

time

neurons
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— Binary encoding leads to sparse activation during training and inference



The whole backpropagation network on Loihi
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Literature comparison on MNIST

99% on training set

Accuracy is as good as it
gets with 400 hidden
neurons in an MLP.

Energy and latency are
competitive, but not
optimized.

Publication Hardware Learning Mode Network Energy per |Latency per |Test
Structure Sample (mJ)|Sample (ms) | Accuracy (%)

On-chip backpropagation
This study [ Loihi [on-chip sBP [400-100-10* [0.592 [1.48 [96.2
On-chip single layer training or BP alternatives
[36] Shrestha et al. (2021) Loihi EMSTDP FA/DFA|[CNN-CNN-100-10 |8.4 20 94.7
[35] Frenkel et al. (2020) SPOON DRTP CNN-10 0.000366°  [0.12 95.3
[33] Park et al. (2019) unnamed mod. SD 784-200-200-10 0.000253" 0.01 98.1
72| Chen et al. (2018) unnamed S-STDP 236-20¢ 0.017 0.16 89
[30] Frenkel et al. (2018) ODIN SDSP 256-10 0.000015 |- 84.5
[73] Lin et al. (2018) Loihi S-STDP 1920-10¢ 0.553 - 96.4
[32] Buhler et al. (2017) unnamed LCA features 256-10 0.000050 0.001" 88
On-chip inference only

| This study Loihi inference 400-100-10* 0.00249 0.169 96.2
[36] Shrestha et al. (2021) Loihi inference CNN-CNN-100-10  [2.47 10 94.7
[35] Frenkel et al. (2020) SPOON inference CNN-10 0.000313 0.12 97.5
[74] Goltz et al. (2019) BrainScaleS-2 | inference 256-246-10 0.0084 0.048 96.9
[73] Lin et al. (2018) Loihi inference 1920-10°¢ 0.0128¢ - 96.4
[72] Chen et al. (2018) unnamed inference 784-1024-512-10 0.0017 - 97.9
[76] Esser et al. (2015) True North |inference CNN (512 neurons) |0.00027 92.7
[76] Esser et al. (2015) True North  |inference CNN (3840 neurons) |0.108 99.4
[77] Stromatias et al. (2015) SpiNNaker inference 784-500-500-10 3.3 11 95
Neuromorphic sBP in simulated SNN
[78] Jin et al. (2018) Simulation BP 784-800-10 - - 98.8
[79] Neftci et al. (2017) Simulation BP 784-500-10 - - 97.7
[80] Shrestha et al. (2019) Simulation EM-STDP 784-500-10 - - 97
[81] Tavanaei and Maida (2019) |Simulation BP-STDP 784-500-150-10 - - 97.2
[82] Mostafa (2017) Simulation BP 784-800-10 - - 97.55
[83] Lee et al. (2016) Simulation BP 784-800-10 - - 98.64
[84] O’Connor and Welling (2016) | Simulation BP 784-300-300-10 - - 96.4
[85] Diehl and Cook (2015) Simulation STDP 784-1600-10 - - 95

MNIST
20x20

Hidden
400

Out
10

400 (20x20) corresponds to 784 (28x28) after cropping of the empty image margin of 4 pixels

b Calculated from given values
¢ Off-chip preprocessing

4 Dynamic energy reported in the Supplementary Material of [75]

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2021).
The backpropagation algorithm implemented on spiking neuromorphic

hardware. arXiv preprint arXiv:2106.07030.
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Solution Time Ratio (vs Loihi)

Loihi vs. GPU
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Note that interpretation is limited as the network is rather small

Directly trained  Converted with rate coding

Novel

[Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size > 1)
[Task 2] Image retrieval (batch size 1)
[Task 2] Image retrieval (batch size > 1)
[Task 3] Image Segmentation

[Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing (SLAYER)

[Task 7] Seq MNIST (batch size 1)

[Task 7] Seq MNIST (batch size 64)

[Task 8] Adaptive arm controller (PES)
[Task 9] LASSO

[Task 10] 1D SLAM

[Task 11] k-NN GIST 1M

[Task 12] Graph search
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Conclusion

Proof of principle of the exact backpropagation algorithm in a spiking
network on Loihi.

Framework of synfire-gated activity allows us to implement operations
that are not otherwise suited for SNN (can be used beyond backprop).

Binary activity encoding leads to high efficiency and sparsity on Loihi (and
is likely compatible with graded spikes on Loihi 2 allowing for non-binary
encoded deeper networks).
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Thank you!

More questions?

alpren@ini.uzh.ch

Paper and code:

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2021). The backpropagation algorithm implemented on spiking
neuromorphic hardware. arXiv preprint arXiv:2106.07030.
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