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Today’s Session Is Being Recorded
This session is being recorded and will be made available for viewing by others by invitation.

If you do not wish for your voice to be recorded, please place your phone on mute for the duration of 
the session.

This session may contain information that is deemed confidential under the terms of the INRC 
Participation Agreement and such information should be handled accordingly. 

If you wish to ask a question or make a comment, please do not disclose any other information that is 
confidential to you, your employer, or any third party. 

The views expressed in this session are those of the contributors and do not necessarily reflect the 
views of Intel Corporation. 
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Agenda

• A short introduction

• Individual thoughts (5 min each x 6 = approx. 30 min)

• Discussion as a panel (20 min)

• Q&A (10 min)

• We can of course merge Panel discussion with Q&A and take Q’s from chat as 
well as Slack.
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Individual thoughts
• Panelists approximately represent the following areas, but nothing is 

set in stone, obviously:

Johan 
Kwisthout

Genetic algorithms mapped to SNNs, Complexity theory for neuromorphic computing and 
its relation to mapping optimization problems (e.g. MIPs are NP-hard)

Cengiz 
Pehlevan

E-I balanced dynamics solving minimax problem

Prasad Joshi Graph search on Loihi

Ojas Parekh Dynamic programming mapped to SNNs, graph search in SNNs

Udayan 
Ganguly

Travelling salesman problem mapped to oscillator networks, hardware implementation of 
Boltzmann machine

Gabriel Fonseca-
Guerra

Constraint Satisfaction Problem
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Brain Inspired Computing research

• Neuromorphic architectures
novel brain-inspired hardware 
→ new computing platform
but also new paradigm

• Traditional computer architectures are well-understood: 
We know what we can do with limited resources and what not

• Neuromorphic systems still lack such understanding

• We contribute theory of computing and algorithm design
both in abstract computation models and on the Loihi

• Some results on complexity theory and optimization algorithms 



Neuromorphic Complexity Theory

• Computational model: 
spiking neural network

• Optimization problem: Input (e.g. CSP) → pre-processing 
leading to network configuration → computation

• Hybrid algorithm: assume neuromorphic co-processor that can 
be queried by regular CPU for specific tasks

• First formal results: NICE 2020 (to be presented this year)

• No free lunch! Neuromorphic architectures can speed up and 
save energy but not solve NP-hard problems in poly time

https://dl.acm.org/doi/abs/10.1145/3381755.3381760



Hybrid and SNN algorithms

• Hybrid algorithm for Max Network Flow – energy saving

http://arxiv.org/abs/1911.13097 (uses Loihi for shortest paths)

• SNN implementation of genetic algorithms

• Early work (student term project neuromorphic course)

• Proof-of-concept (one-max function)

• Approach not uncommon to Chris Yakopcic’s SAT work

• Iteratively generating solutions, crossover, mutation

• Micro-circuits for
sorting etc.

• Some results:

http://arxiv.org/abs/1911.13097
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Searching graphs with spikes

ROBOT MOTION LOIHI REPRESENTATION

DARPA SDR Site B
(Data from Radish Robotics Dataset)Based on Ponulak F., Hopfield J.J. Rapid, parallel path planning by 

propagating wavefronts of spiking neural activity. Front. Comput. Neurosci. 
2013. V. 7. Article № e98.

Runtime comparison to best 
Dijkstra optimizations:

▪ Neuromorphic: O(𝐿⋅√𝑉)

▪ Standard: O(𝐸) 

For most nontrivial problems:

▪ L<<E

▪ V<<E

Neuromorphic solution uses fine-grain 
parallelism  an temporal wavefront-driven 
computation to potentially provide great 

performance gains for 
large problems.
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Using Loihi for Driving Directions in Colorado

Loihi: Fine-Grain Parallel Search Dijkstra: Sequential Breadth-First Search
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Searching Small World Graphs with Loihi

Loihi search has >100x latency advantage
versus a CPU (Xeon Gold 6136)

Small world networks up to 1M vertices mapped to Loihi
Spikes traverse graph and identify shortest path in time

(versus CPU search with optimized Dijsktra’s Algorithm)

From upcoming Proceedings of the IEEE publication; preprint available
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References and System Test Configuration Details

Loihi graph search algorithm based on Ponulak F., Hopfield J.J. Rapid, parallel path planning by propagating wavefronts of 
spiking neural activity. Front. Comput. Neurosci. 2013.  Loihi: Nahuku and Pohoiki Springs systems running NxSDK 0.97. CPU: 
Intel Xeon Gold with  384GB  RAM,  running  SLES11, evaluated with Python 3.6.3, NetworkX library augmented with an 
optimized graph  search  implementation  based  on  Dial’s  algorithm. See also
http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf

Results may vary.

http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_Mike_Davies.pdf
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Sandia National Laboratories is a multimission

laboratory managed and operated by National 

Technology & Engineering Solutions of Sandia, 

LLC, a wholly owned subsidiary of Honeywell 

International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 

Administration under contract DE-NA0003525.

Provable neuromorphic 
advantages for graph algorithms

O j a s P a re k h  

w i t h J a m e s  B . A i m o n e , Ya n g  H o , C y n t h i a  P h i l l i p s , A l i  P i n a r, 
W i l l i a m  S eve r a , a n d  Y i p u Wa n g

P r e s e n t e d  b y



Neuromorphic Graph Algorithms

Landscape of current neuromorphic applications 
based on 2500+ references
[Schuman et al., https://arxiv.org/abs/1705.06963, 2017]

▪ 2017 survey by Schuman et al. of neuromorphic computing covering 
2500+ references had only 8 citations of graph applications (see figure)

▪ Most of above graph applications have a learning-oriented component
(Hopfield networks or Boltzmann machines)

▪ Recent interest in spike-based graph algorithm papers
(e.g., [arXiv: 1902.10369, 1903.10574, 1911.13097, 2001.08439, 2010.01423 

https://doi.org/10.1145/3354265.3354285] )

▪ None of these works demonstrate an asymptotic neuromorphic 
advantage over conventional computing
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Shortest Paths, Neuromorphically

Networks of spiking neurons elegantly implement Dijkstra’s algorithm

Spiking shortest paths algorithm
[Aibara et al., IEEE Int. Symp. on Circuits and Systems, 1991]
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Leaky integrate and fire (LIF) neuron
Image from [Lee et al., https://doi.org/10.3389/fnins.2020.00119] 

▪ Application to shortest paths: program all neurons to propagate any 
incoming spikes, with delays on synapses proportional to edge weights

▪ Initiate spike at node s, and terminate when node t first fires

▪ Although elegant, this is a pseudopolynomial-time, whose run time 
depends linearly on the edge weights

▪ We design polynomial-time algorithms for k-hop shortest paths



First Asymptotic Neuromorphic Advantages 
(for Shortest Paths) 

Algorithm type k-hop single source 

shortest paths

Conventional 

(Floyd-Warshall)

෨𝑂(𝑘𝑚)

Neuromorphic

implementation

෨𝑂(𝑘) Assumes problem graph may be embedded 
without dilation in neuromorphic hardware

𝑛 − number of nodes in graph
𝑚 − number of edges in graph
𝑘 − weighted shortest path with

at most 𝑘 edges
poly-log factors ignored in table

We also take embedding/data-movement
costs into account by only assuming a simple 
2d-grid-like ”crossbar” architecture.

On conventional side, we introduce a
geometric data-movement model.

Algorithm type k-hop single source 

shortest paths

Conventional 

(Floyd-Warshall)

෨𝑂(𝑘𝑚1.5)

Neuromorphic

implementation

෨𝑂(𝑘𝑚)

Data-movement aware running times.

Any conventional algorithm needs Ω 𝑚1.5

to read input in our model.

More detailed presentation of
results appeared in SPAA 2020
[https://doi.org/10.1145/3350755.3400258]



Dynamic Programming

Wikipedia: 30 applications across diverse domains
[https://en.wikipedia.org/wiki/Dynamic_programming]

Another list with 50 applications
[https://blog.usejournal.com/top-50-dynamic-programming-
practice-problems-4208fed71aa3]

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems



Neuromorphic Dynamic Programming

New neuromorphic algorithms for dynamic programming
Spike times encode dynamic programming table values

Example: Dynamic Program for Knapsack Problem

Each table entry is value of best knapsack solution 
of weight at most W using items {1,…,k}

Knapsack Problem:
N items, each with weight wi and value vi

Goal: pick subset of items of weight at most W,
maximizing total value.

3,5

2,2

2,5

p3

0

= 6

𝑇 3,5 = 𝑚𝑎𝑥{𝑇 2,5 − 𝑤3 + 𝑝3, 𝑇 2,5 }
= 3

Spiking approach: T[i,j] encoded as time neuron (i,j) receives 
incoming spike on last of its incoming links 

[ICONS 2019, https://doi.org/10.1145/3354265.3354285]
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n-oscillator for n-city 
Traveling Salesman Problem

Udayan Ganguly

IIT Bombay

INRC Panel 

Feb 11, 2021

2/17/2021 U Ganguly IIT Bombay INRC 2021 27



Oscillator Neural Network (ONN) 
Traveling Salesman Problem

𝑛-Oscillator Phase 
determines tour; No 
degeneracy

𝑛2 Oscillator Phase 
clustering determines 
tour; High degeneracy

Performance Comparison

A) Neuromorphic Hardware should be able to solve such problems approximately but efficiently!
2/17/2021 U Ganguly IIT Bombay INRC 2021 28

TSP is a very difficult NP Hard problem



Boltzmann Machine with Stochastic 
Nanoscale RRAM for Max Cut Problem

2/17/2021 U Ganguly IIT Bombay INRC 2021 29

1. Max Cut problem is mapped to Boltzmann Machine

2. Boltzmann Machine is mapped to Cross Bar + RRAM
3. RRAM: Stochastic Switching
Approx. Analog Sigmoid (AAS)

4. AAS has better Power 
Performance Area (PPA) trade-
off compared to Digital 
Precision Sigmoid (DPS) 

B) Neuromorphic Hardware based on nanoscale devices may enable PPA improvement!



Key Enablers for Neuromorphic Solvers

• Parallel communication in network

• Specific Network Structure/Design

• Stochasticity/Noise Mediated

• Others …(?)

2/17/2021 U Ganguly IIT Bombay INRC 2021 30
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Optimization formulation in binary domain:

Minimize:

𝐸 = 𝑆𝑇 ⋅ 𝑊 ⋅ 𝑆 | 𝑊 ∈ −1,0,1 𝑁×𝑁

Subject to: 
𝑆𝑖⋅ 𝐷𝑖 +𝑘 = 𝑆𝑖𝑘

′ , 𝑆′𝑖𝑘 ∈ 0,1 , ෍

𝑘

𝑆′𝑖𝑘 = 1,

EncodingProblem definition:

Given:

Find assignment to 𝑋𝑖 out of 𝐷𝑖 that satisfies all constraints.

CSPs and Their Encoding with SNNs

Variables represented by Winner-Take-All (WTA) circuits

Interconnectivity between WTAs 
encode Constraints

1Minimization ⇔Sampling from probability distribution 𝑝(𝑥)
biased towards low-energy states:

1Stochastic search via SNN enables faster convergence than pure gradient 
dynamics.

1 Adapted from: Jonke Z, et. al (2016) Solving Constraint Satisfaction Problems with
Networks of Spiking Neurons. Front. Neurosci. 10:118. doi: 10.3389/fnins.2016.00118

𝐶𝑆𝑃 = 𝑋𝑖 , 𝐷𝑖 , Yj, Rj

Variables

Value domains

Variable subsets Value restrictions

Constraints 𝐶𝑗
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How SNNs Solve the Problems

……

-1

-1

…

-1

-1

-1

-1

…

…

Binary WTA variables
Spikes inhibit 
conflicting states

Search space 
gets pruned

State may converge to one or 
sequentially different solutions

• Binas et al., (2016) Spiking Analog VLSI Neuron Assemblies as CSP solvers, ISCAS, 2094-2097.
• Fonseca et al., (2017) Using stochastic spiking neural networks on SpiNNaker to solve constraint satisfaction problems, Front. Neurosci. 11:714.

Previous approaches rely on costly sampling of complete high-dimensional system at every (other) step:

Stochastically Spiking 
neurons represent 
specific values

Time
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Task description

• A Latin square consists of an N × N array of variables each 
of which can take on N possible values such that no 
number is repeated in a row or column of the grid.

• Benchmark against the open-source state-of-the-art 
solver.

Scaling up

Domain
size:

9 16 20

Variables: 81 256 400

Encoding

Latin Squares Benchmarking and Scaling
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Latin Squares Benchmarking and Scaling

Scaling:

Latin Square size is scaled up. Bigger problem 
implies:

• more neurons, cores and synapses.

• increased difficulty by exponential growth 
of the state space

Take away:

Compared with the state-of-the-art CBC solver1, 
Loihi:

• is up to 44 times faster

• has 3-5 orders of magnitude lower EDP

• solves Latin Squares in the range 2x2 to 
20x20

• can find different solutions for the same 
problem.

Largest CSPs solved with neuromorphic HW.2

Loihi: Nahuku board running with NxSDK 0.95 on a host Intel Core i7-9700K with 128GB RAM, running Ubuntu 
16.04.6 LTS
CPU: Intel Core i7-9700K, RAM: 128GB, running Ubuntu 16.04.6 LTS.

Performance results are based on testing as of December 2020 and may not reflect all 
publicly available security updates. Results may vary. 

[1] www.coin-or.org/projects/
[2] Davies et.al Proceedings of the IEEE, in review.
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Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for 
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular 
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may 
be claimed as the property of others.
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Food for thought to get started

• Why SNNs and/or neuromorphic platforms show good performance 
on the optimization problems?

• How would we classify the landscape of optimization problems? 
• Are some classes more amenable to acceleration by event-based algorithms 

than others?

• How can we create a unified framework for looking at SNN-friendly 
versions of optimization algorithms?

• Is there an architectural feature that we may think of, which might 
further enhance the performance? 


