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Agenda

= A short introduction

= Individual thoughts (5 min each x 6 = approx. 30 min)
= Discussion as a panel (20 min)

* Q&A (10 min)

= \We can of course merge Panel discussion with Q&A and take Q’s from chat as
well as Slack.
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Individual thoughts

» Panelists approximately represent the following areas, but nothing is
set in stone, obviously:

Johan Genetic algorithms mapped to SNNs, Complexity theory for neuromorphic computing and
Kwisthout its relation to mapping optimization problems (e.g. MIPs are NP-hard)

Cengiz . . .
Pehlevan E-l balanced dynamics solving minimax problem
Prasad Joshi Graph search on Loihi

Ojas Parekh Dynamic programming mapped to SNNSs, graph search in SNNs

Udayan Travelling salesman problem mapped to oscillator networks, hardware implementation of
Ganguly Boltzmmann machine

SRR FEMESEEr o i St n e
Guerra
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BRAIN

Brain Inspired Computing research ébN,a';'S-'f-P G

TI——LL L
« Neuromorphic architectures SRR e g
novel brain-inspired hardware iubiiompriigidiorme
- new computing platform
but also new paradigm WU JL UL L
ic) Spiking Signalin Brain {d) Digital Signalin Computer

« Traditional computer architectures are well-understood:
We know what we can do with limited resources and what not

« Neuromorphic systems still lack such understanding

« We contribute theory of computing and algorithm design
both in abstract computation models and on the Loihi

« Some results on complexity theory and optimization algorithms



Neuromorphic Complexity Theory

Computational model:
spiking neural network

Input

R/W head

Computation on M,
taking resources Ry

Computation

Computingon S
taking resources Rg

« Optimization problem: Input (e.g. CSP) - pre-processing
leading to network configuration > computation

« Hybrid algorithm: assume neuromorphic co-processor that can
be queried by regular CPU for specific tasks

« First formal results: NICE 2020 (to be presented this year)

save energy but not solve NP-hard problems in poly time

https://dl.acm.org/doi/abs/10.1145/3381755.3381760

Output

No free lunch! Neuromorphic architectures can speed up and



Hybrid and SNN algorithms

« Hybrid algorithm for Max Network Flow — energy saving
http://arxiv.org/abs/1911.13097 (uses Loihi for shortest paths)

« SNN implementation of genetic algorithms

« Early work (student term project neuromorphic course)
* Proof-of-concept (one-max function)
« Approach not uncommon to Chris Yakopcic's SAT work
 Iteratively generating solutions, crossover, mutation
* Micro-circuits for
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http://arxiv.org/abs/1911.13097
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Minimax Dynamics of Optimally Balanced Spiking
Networks of Excitatory and Inhibitory Neurons

Qianyi Li Cengiz Pehlevan
Biophysics Graduate Program  John A. Paulson School of Engineering and Applied Sciences
Harvard University Harvard University
Cambridge, MA 02138 Cambridge, MA 02138
gianyi_li@g.harvard.edu cpehlevan@seas.harvard.edu

NeurlPS, 2020
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E-1 balance arises from saddle points
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Natural image patches
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Searching graphs with spikes

Runtime comparison to best
Dijkstra optimizations: ROBOT MOTION LOIHIREPRESENTATION

= Neuromorphic: O(L-+V)
» Standard: O(E)

For most nontrivial problems:

m | <<|F
m \/<<E

Neuromorphic solution uses fine-grain
parallelism an temporal wavefront-driven

® Robot Location ‘ : O Place Cells }§ N
. : . Service Location ‘ @ Spikes s
computationto potentially provide great : |
performance gains for
large problems.

DARPA SDR Site B

Based on Ponulak F.,, Hopfield J.J. Rapid, parallel path planning by (Data from Rad|sh RObOt|CS Dataset)

propagating wavefronts of spiking neural activity. Front. Comput. Neurosci.
20I13. V. 7. Article Ne e98.
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Using Loihi for Driving Directions in Colorado

Dijkstra: Sequential Breadth-First Search

esthoods f

o ]‘

T -

ake :
Park‘} 5

\-\
{

A .n

nch Golf Club ¢ -

C INTYRE ST~

South Table w
Mountain Park e 4

/ /e € w 267H AVE
v/( |£

Loihi: Fine-Grain Parallel Search
= - ot o - %
S - : S
&s. SNl 5 3 Westm
/ ALA 2 | "\.,C‘\- l\/{g\ s oW 76TH Avs“
) S JESNGE S .
L& - { - *I ’ - E‘ g =
== © W72ND AVE- e — T W 72ND A
-’ E |; g - g g
I 0 = N O WEBTH AVE 2
Y § Q WESTHAVE 3 N % §~
Ay (1Y >
i (72) RALSTON RD A= o @ WEATH 4
@ - | weanD AVED S "%
! & W 60TH AVE . } 2| ‘ é‘
{| X R L — PN O
“_'.(/ W 58TH AVE Arvad@ SGT-H A;Er | ‘ ;.‘:
3N o
( , A 7L
[ I 7
W S2ND AVE ;NDva‘D‘ A TN e
(2 - A= | =]
Sga/ S  Mount Olivet“ =) | % ‘,(.;
’ = Cemetery -l | i
S waatH W‘ — . ¥ ‘ﬁ,_._\‘\rj Mountain
= 1“- : View
-. - ]
AVE IS W 35TH AVE
- W 32ND A W.33RD AVE ]
. 5 R y{#
S =y Crown Hill 1L\ 5ory ave )
. Cemetery | |
s ~ W 26TH AVE |

1S ONINdIN

w 24TH AveSloanisiLake
W 20TH AVE 2l

SAW

Neuromorphic Computing Lab

e e [ ‘
’Ql\ SRS '5‘&(’ § w
/ A/ | = Mhe [ 2 oW 76THAVE eStm
’ __I N & \‘\ ) o g
Sy, | il | IR |
e W.72ND AVE e ) ~ W 72ND A
e el L e
Nest oods Sl || o ‘ = N W 68TH AVE 2
2 Q \! 2
nch Golf Club &~ & 2 (et % S > :
A Lo L 72 ) RALSTON RO iy 35 @ WEATH 4
Park | L= « )\ “ | W62ND AVE S =z
1 o W 60TH AVE ] \ | é‘
. ] : ‘ |
7 dF r/ W SBTH AVE Arva da ‘ S
| f‘~.,|~ _ W S6TH AVE® 4 L
G ! N - p— '
Br=idata = //
J& ng 5 W S2ND AVE NDGERD y ! -/ :
130 ez (2 =gl ‘*"7;«."?-’ 'I— |
)i A L V= s > . poss A P - "
() g S P Ollvet“ ] / _‘1[’]
L] ’ = Cemetery~.all ) t
o waatH/NE =4 5 v "_"\wj Mountain
L (. . ‘
-m | = View
- ‘ \' \ =]
¢ | o d A
! ~ AP W 33RD AVe
- ! : ——t - wssz"A
S (o 58 rown il
(7| | S -] Cemetery ||\ 2THAVE
R - 3 /N W3ETHAVE. 5T - W 26THAVE,
: - 3 ) ‘ SloanisjLake
South Table,w - 2 9 W 24TH AVE
.. Mountain Park </ b W 20TH AVE - ‘

intel labs



Searching Small World Graphs with Loihi
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From upcoming Proceedings of the IEEE publication; preprint available
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References and System Test Configuration Details

Loihi graph search algorithm based on Ponulak I, Hopfield J.J. Rapid, parallel path planning by propagating wavefronts of
spiking neural activity. Front. Comput. Neurosci. 2015, Loihi: Nahuku and Pohoiki Springs systems running NxSDK 0.97. CPU:
Intel Xeon Gold with 384GB RAM, running SLESIT], evaluated with Python 3.6.3, NetworkX library augmented with an
optimized graph search implementation based on Dial’s algorithm. See also
http://rpa.ifi.uzh.ch/docs/CVPRI9workshop/CVPRWI9_Mike Davies.pdf
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Provable neuromorphic
advantages for graph algorithms

-~ .,__.‘llb-“-.‘.l". \.. .“é b - > .« -~ _"..‘ _._r':
Presented by
Ojas Parekh
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with James B. Aimone, Yang Ho, Cynthia Phillips, Ali Pinar, © S
W'IIlam Seve ra, and Y|Pu Wang Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



‘ Neuromorphic Graph Algorithms

Implantable/

Anomaly Wearable

Detection

2017 survey by Schuman et al. of neuromorphic computing covering
2500+ references had only 8 citations of graph applications (see figure)

Most of above graph applications have a learning-oriented component
(Hopfield networks or Boltzmann machines)

Recent interest in spike-based graph algorithm papers
(e.g., [arXiv: 1902.10369, 1903.10574, 1911.13097, 2001.08439, 2010.01423

https://doi.org/10.1145/3354265.3354285] ) Landscape of current neuromorphic applications

based on 2500+ references
[Schuman et al., https://arxiv.org/abs/1705.06963, 2017]

None of these works demonstrate an asymptotic neuromorphic
advantage over conventional computing


https://arxiv.org/abs/1705.06963

‘ Shortest Paths, Neuromorphically

[ Networks of spiking neurons elegantly implement Dijkstra’s algorithm ]

Pre-spikes  Synapses

LIF Neuron Spiking shortest paths algorithm
- Threshold [Aibara et al., IEEE Int. Symp. on Circuits and Systems, 1991]

(Ver) Post-spikes, 0,
- | | | |
FIJI H t 6 t3 ty . 24

t, t t3 ty time

Leaky integrate and fire (LIF) neuron
Image from [Lee et al., https://doi.org/10.3389/fnins.2020.00119]

Application to shortest paths: program all neurons to propagate any
incoming spikes, with delays on synapses proportional to edge weights

Initiate spike at node s, and terminate when node t first fires

depends linearly on the edge weights

i
Although elegant, this is a pseudopolynomial-time, whose run time : ‘
We design polynomial-time algorithms for k-hop shortest paths I



First Asymptotic Neuromorphic Advantages

(for Shortest Paths)

Algorithm type k-hop single source
n — number of nodes in graph shortest paths

m — number of edges in graph

k — weighted shortest path with
at most k edges

poly-log factors ignored in table

vy
\/ -

Usy

Vs

Us3

Conventional
(Floyd-Warshall)
Neuromorphic
implementation
vl Vi v
V1g / V13
+ + +
Vo1 Va2 U23
/ Uz_z l/ UZ_S/
vt + +
31 VU3g Uss
e e e

=

0 (km)
0(k) Assumes problem graph may be embedded
without dilation in neuromorphic hardware
4 We also take embedding/data-movement
costs into account by only assuming a simple
% 2d-grid-like “crossbar” architecture. i

s

On conventional side, we introduce a
geometric data-movement model.

Algorithm type k-hop single source
shortest paths

Conventional
(Floyd-Warshall)

Neuromorphic
implementation

More detailed presentation of

results appeared in SPAA 2020
[https://doi.org/10.1145/3350755.3400258]

0 (kml's) Data-movement aware running times.

Any conventional algorithm needs Q(m*®)
0(km) to read input in our model.



‘ Dynamic Programming

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems

» Recurrent solutions to |attice models for protein-DNA binding
» Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems

» Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems

+ Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)

¢ Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.

» The Cocke-Younger—Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar
» Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text

» The use of transposition tables and refutation tables in computer chess

» The Viterbi algorithm (used for hidden Markov models, and particularly in part of speech tagging)

¢ The Earley algorithm (a type of chart parser)

» The Needleman—Wunsch algorithm and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction

» Floyd's all-pairs shortest path algorithm

* Optimizing the order for chain matrix multiplication

* Pseudo-polynomial time algorithms for the subset sum, knapsack and partition problems

s The dynamic time warping algorithm for computing the global distance between two time series

» The Selinger (a.k.a. System R) algorithm for relational database query optimization

» De Boor algorithm for evaluating B-spline curves

* Duckworth—Lewis method for resolving the problem when games of cricket are interrupted

+ The value iteration method for solving Markov decision processes

¢ Some graphic image edge following selection methods such as the "magnet" selection tool in Photoshop
» Some methods for solving interval scheduling problems

» Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)
* Recursive least squares method

¢ Beat tracking in music information retrieval

¢ Adaptive-critic training strategy for artificial neural networks

» Stereo algorithms for solving the correspondence problem used in stereo vision

» Seam carving (content-aware image resizing)

» The Bellman—Ford algorithm for finding the shortest distance in a graph

+ Some approximate solution methods for the linear search problem

¢ Kadane's algorithm for the maximum subarray problem

» Optimization of electric generation expansion plans in the Wein Automatic System Planning (WASP) & package

Wikipedia: 30 applications across diverse domains
[https://en.wikipedia.org/wiki/Dynamic_programming]

Another list with 50 applications
[https://blog.usejournal.com/top-50-dynamic-programming-
practice-problems-4208fed71aa3]



‘ Neuromorphic Dynamic Programming

New neuromorphic algorithms for dynamic programming
Spike times encode dynamic programming table values

Example: Dynamic Program for Knapsack Problem Knapsack Problem:
N items, each with weight w; and value v,

Goal: pick subset of items of weight at most W,
maximizing total value.

6

[ | =3
T[3,5] = max{T[2,5 — w3] + p3,T[2,5]}

-

P3

.
LI el B I S

Each table entry is value of best knapsack solution
of weight at most W using items {1,...,k}

[ICONS 2019, https://doi.org/10.1145/3354265.3354285] Spiking approach: T[i,j] encoded as time neuron (i,j) receives
incoming spike on last of its incoming links
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n-oscillator for n-city
Traveling Salesman Problem

Udayan Ganguly
IIT Bombay
INRC Panel

Feb 11, 2021

U Ganguly [IT Bombay INRC 2021
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Oscillator Neural Network (ONN)
Traveling Salesman Problem

Efficient
Solutions to TSP
Optimization

Oscillator Phases
Mapped Cost =
Functions

Stochastic Gradient
Descent Neural |4
Networks
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A) Neuromorphic Hardware should be able to solve such problems approximately but efficiently!

2/17/2021
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Boltzmann Machine with Stochastic
Nanoscale RRAM for Max Cut Problem

(a)

(b)
1. Max Cut problem is mapped to Boltzmann Machine

(c)

2. Boltzmann Machine is mapped to Cross Bar + RRAM

2/17/2021
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3. RRAM: Stochastic Switching
Approx. Analog Sigmoid (AAS)
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N B
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non SF

(a)

4. AAS has better Power

Performance Area (PPA) trade-

off compared to Digital
Precision Sigmoid (DPS)

B) Neuromorphic Hardware based on nanoscale devices may enable PPA improvement!

U Ganguly IIT Bombay INRC 2021
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Key Enablers for Neuromorphic Solvers

e Parallel communication in network
* Specific Network Structure/Design
* Stochasticity/Noise Mediated

e Others ...(?)
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NCL

CSPs and Their Encoding with SNNs

Problem definition:

Given: Variable subsets  Value restrictions
1
1 1

vy Vv
CSP = {){i,Di, v R}

Variables

=
-

Constraints G
Value domains

Find assignment to X; out of D; that satisfies all constraints.

Optimization formulation in binary domain:
Minimize:

E=ST-W-S| We{-101}V<VN
Subiject to:
Siipl+k = Si S €{0,1}, zs'ik =1,
K

Neuromorphic Computing Lab

Encoding
Variables replresented by Winner-Take-All (WTA) circuits
1

X

4_ -—
\
,’ » |
v
©
1
w
~ :
=
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>
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> o )

A
:C}=({XPX;J’X)#;&J

1
Interconnectivity between WTAs
encode Constraints
Minimization & Sampling from probability distribution p(x)
biased towards low-energy states:

p(z) o e El@)
0 p(x)
1E(x)
0000 1 1 11
BEEE R EE
6 1010101

I1Stochastic search via SNN enables faster convergence than pure gradient
dynamics.

1 Adapted from: Jonke Z, et. al (2016) Solving Constraint Satisfaction Problems with intel Ia bS 32
Networks of Spiking Neurons. Front. Neurosci. 10:118. doi: 10.3389/fnins.2016.00118



How SNNs Solve the Problems

S T A veTTelsles Splk(—?s |_nh|b|t Search space State ma.ly cor?verge to one_ or
_ conflicting states gets pruned sequentially different solutions
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Stochastically Spiking
neuronsrepresent e |
specific values
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9: 000000 -
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e

Time
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Previous approaches rely on costly sampling of complete high-dimensional system at every (other) step:

+ Binasetal, (2016) Spiking Analog VLSI Neuron Assemblies as CSP solvers, ISCAS, 2094-2097.
+ Fonseca et al., (2017) Using stochastic spiking neural networks on SpiNNaker to solve constraint satisfaction problems, Front. Neurosci. 11:714.
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Latin Squares Benchmarking and Scaling

Task description Encoding

* A Latin square consists of an N x N array of variables each
of which can take on N possible values such that no
number is repeated in a row or column of the grid.

* Benchmark against the open-source state-of-the-art

solver.
Scaling up
Variables: 81 256 400
Domain 9 16 20
Size:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIl C/.:({XI,X"I},X]#_X’")

NOEN Neuromorphic Computing Lab
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Latin Squares Benchmarking and Scaling

Number of Cores Number of Cores Scaling:
3 4 8 16 30 52 8 3 4 8 16 30 52 82 Latin Square size is scaled up. Bigger problem
=p= CBCICPU ' —~ —CBCICP | ' ' | ' implies:
107_ mmmm | 0jhi g 103_ | 0ihi
= > o8 = = more neurons, cores and synapses.
=N
> 104/ < ' § 1011 = increased difficulty by exponential growth
3 ‘ 3 of the state space
w et
10} 201 Take away:
" —
!. | | . | . ‘ a Compared with the state-of-the-art CBC solver!,
1012{ e cs_c;cpu ' ' ! ! ) ~ 20 T Loihi:
— Lmhiu.g,q-&‘"/“ = 8% = isupto44times faster
% 108+ = X | = .
S 10 oo . < 15 65 = has 3-5 orders of magnitude lower EDP
;«i 10*4 ye o % 10 _4§ * solves Latin Squares in the range 2x2 to
2 A P 20x20
10°; o 2] 2 E o .
5 = = can find different solutions for the same
| R OB R e e S s S o 0 problem.
4 25 64 121 196 289 400 4 25 64 121 196 289 400 . .
Number of Variables Number of Variables Largest CSPs solved with neuromorphic HW.2
ﬁsogz(/s\/i{?rgkuboardrunnlhg with NxSDK 0.95 on a host Intel Core i7-9700K with 128GB RAM, running Ubuntu [1] Www.coin-or.org/projects/

CPU: Intel Core i7-9700K, RAM: 128GB, running Ubuntu 16.04.6 L TS. [2] Davies et.al Proceedings of the IEEE, in review.

Performance results are based on testing as of December 2020 and may not reflect all

NEL publicly available security updates. Results may vary. |ntel Ia bS 35
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egal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.
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Food for thought to get started

= Why SNINs and/or neuromorphic platforms show good performance
on the optimization problems?

 How would we classifty the landscape of optimization problems?

= Are some classes more amenable to acceleration by event-based algorithms
than others?

* How can we create a unified framework for looking at SNN-friendly
versions of optimization algorithms?

= |s there an architectural feature that we may think of, which might
further enhance the performance?
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