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Pros:

1. Energy efficient. (≈ 20 Watts)

2. Robust and versatile.

Artificial Intelligence

Automatic Driving Computer Vision

Pros:

1. Fast IO and computation. 

2. Consistent in repetitive and specialized tasks.

Cons:

1. Costs a lot of energy. 

2. Lacks robustness and versatility.

Disaster Rescue

Biological Intelligence

Neuromorphic SLAM

(1D SLAM, IROS 2019) (2D Mapping, NICE 2020)

Spiking Locomotion Control

Spiking Reinforcement Learning

(Cont. Control, CoRL 2020)

(Oculomotor, BioRob 2020*)

* Loihi version to be published

(Navigation, IROS 2020)

(Spiking CPG, ICONS 2020)

Loihi-run robot applications 
at ComBra Lab



Observation: LiDAR, Point Clouds, IMU, Tactile …

Action: Wheel Velocity, Joint Force, Decision …

Reward: Goal Reaching, Collision, Moving Speed, …

Robot Planning and Control with
Reinforcement Learning

Robot Interacting
With Environment

Agent

Observation

Reward

Action

Maximize Cumulative Reward

Neuromorphic SLAM

(1D SLAM, IROS 2019) (2D Mapping, NICE 2020)

Spiking Locomotion Control

Spiking Reinforcement Learning

(Cont. Control, CoRL 2020)

(Oculomotor, BioRob 2020*)

* Loihi version to be published

(Navigation, IROS 2020)

(Spiking CPG, ICONS 2020)

Loihi-run robot applications 
at ComBra Lab



Reinforcement co-Learning for Mapless Navigation 

Hybrid Training with SDDPG

Spiking Actor 
Network

Deep Critic 
Network

• DNN and SNN are trained jointly using 
gradient descent

• Hybrid training allows DNN and SNN to 
overcome each other’s limitations through a 
shared representation learning

Intel’s Loihi

Observations

Differential  Wheel Speed

In

Out

Spiking Actor 
Network

Energy-Efficient Mapless Navigation

Control robot toward goals 
with obstacle avoidance

Guangzhi Tang, et al. "Reinforcement co-Learning of Deep and Spiking Neural Networks 
for Energy-Efficient Mapless Navigation with Neuromorphic Hardware." IROS 2020



Robot Goal

Gazebo Simulator

Agent
(Spiking

Actor 
Network)

Observation

Reward

Action

Exploration

Overview of Mapless Navigation Training

Memory

Random 
Minibatch

Memory Replay 
Hybrid Training

Off-policy Training 

LiDAR, Speed, Goal

Reach goal, Collision

Wheel Speed



Curriculum Learning: Train from easy to hard

(Easy) (Hard)Train Sequentially with Random Start-Goal Pairs

Free Path Partially Block Path Fully Block Path Everything Combined



SDDPG: Spiking Deep Deterministic Policy Gradient

Spiking
Actor Network

Deep
Critic Network

Observation (t)

Spike Encoder

Action (t)

Observation (t)

Q(t)

Maximize Q (t)

Train Spiking Actor Network

Deep
Critic Network

Observation 
(t)

Q(t)

Action 
(t)

Target Deep
Critic Network

Observation 
(t+1)

Q(t+1)

Action 
(t+1)

Memory Target SAN

Target Q(t) = Reward + λ ∙ Q(t+1)

Train Deep Critic Network



Spiking Actor Network: Forward Propagation

Spiking
Actor Network

Observation

Spike Encoder

Action

Spiking Neuron: Leaky Integrate-and-Fire (LIF) Model
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Output Spike (o)

Threshold

0 TTimesteps



Spiking Actor Network: Backward Propagation

Spiking Neuron: Leaky Integrate-and-Fire (LIF) Model

Input spike
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Spiking
Actor Network

Deep
Critic Network

Action Q

Spiking Actor Network: Backward Propagation

Maximize action value Q with loss function:

Gradient propagates through critic network:

Spatial and temporal gradients of spiking neurons:

Spatial Temporal

Spatial Temporal

Propagate gradient to presynaptic layer

Step t Step t+1Layer k-1

Layer k Step t Step t+1



Spiking
Actor Network

Deep
Critic Network

Action Q

Combining gradients from all timesteps and 
update weights and biases:

Step t Step t+1Layer k-1

Layer k Step t Step t+1

Update network parameters every T timesteps

Spiking Actor Network: Backward Propagation



Realization on Loihi Neuromorphic Processor

• Realize the trained SAN onto Loihi
with low precision weights using layer-
wise rescaling

• ROS communicates with Loihi using 
data channels

• Deploy encoder and decoder on 
Loihi’s low-frequency x86 cores to 
reduce data transfer load

• ROS-Loihi interaction framework 
controls the mobile robot in real-time



Speed x2

Spiking Actor 
Network

Input Spikes

Output Spikes

Scan
(18)

Speed
(3)

Goal
(3)

Left

Right

Goal Robot Path

Real-world evaluation for 
SNN on Loihi

Spiking Neural Network for Autonomous Navigation



Speed x4SNN on LoihiDeep Network on Jetson TX2

SNN is 75 times more 
energy efficient than 

Deep Network

Spiking Neural Network for Autonomous Navigation

Goal Robot Path



Deep RL SNN

SNN shows higher successful rate navigating in complex environment 

Spiking Neural Network for Autonomous Navigation



High-dimensional Continuous Control

OpenAI Robot Hand Google Robot Arm Farm

Boston Dynamic Spot RobotCSIRO Weaver Hexapod

• Robot systems for complex applications 
often have high-dimensional observation 
and action space

• Optimality of the control policy highly 
depends on the encoding precision of the 
continuous observation and action

• Encoding precision of individual spiking 
neuron is limited due to event-based 
computation

• Especially problematic when a small 
inference timestep is used for better 
energy efficiency



• Encodes each dimension of the observation and action spaces in 
individual neuron populations with learnable receptive fields

• Supports a wide spectrum of DRL algorithms (DDPG, TD3, SAC, and 
PPO) to learn energy-efficient solutions for continuous control problems 

Population-coded Spiking Actor Network (PopSAN)

Hybrid DRL

Deep Critic 
Network

PopSAN

Guangzhi Tang, et al. “Deep Reinforcement Learning with Population-coded Spiking 
Neural Network for Continuous Control." CoRL 2020



Input Neuron Populations in PopSAN

N-dimensional Observation (S)

Spikes of Input Neuron Populations

Each dimension of S is encoded by a population 
of neurons with neuron activity defined by:

Neuron receptive field is defined by (μ, σ), which 
are trainable
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Population representing one dimension of S using 
10 spiking neurons



Input Neuron Populations in PopSAN

N-dimensional Observation (S)

Gradients from Post-synaptic Layer
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Population representing one dimension 
of S using 10 spiking neurons

After Training



Input Neuron Populations in PopSAN

PopSAN trained using TD3 for Hopper-v3

• Learnable encoder performs better than 
fixed encoder

• Decrease of population size hurts the 
performance of PopSAN



Output Neuron Populations in PopSAN

M-dimensional Action (A)

Spikes from Pre-synaptic Layer

Output populations are fully connected to the last hidden 
layer of PopSAN. 

Each dimension of A is decoded by the weighted sum of 
neuron activities in the population:

Neuron receptive field is defined by W, which are 
trainable



Output Neuron Populations in PopSAN

Gradients from Hybrid DRL Training

Gradients to Pre-synaptic Layer
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Output Neuron Populations in PopSAN

Gradients from Hybrid DRL Training
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(Trained using TD3 algorithm)

HalfCheetah Hopper

Real-time Loihi Control with PopSAN



(Trained using TD3 algorithm)

Walker2d Ant

Real-time Loihi Control with PopSAN
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HalfCheetah-v3 Hopper-v3 Walker2d-v3 Ant-v3

PopSAN achieved the same level of performance as the Deep Actor Networks 
across all tasks, while 140 times more energy efficient during inference.

PopSAN trained using on-policy and off-policy DRL



Challenges for Robot Control and DRL with Loihi

Inference Control Loop on Loihi

Limited inference speed with Loihi when compared 
with other processors for the same control task

Power performance and inference speed across hardware

• Frame-based inference requires multiple Loihi steps 
to produce one control command

• Input/Output bandwidth becomes a bottleneck of 
Loihi for high-dimensional observation and action



Challenges for Robot Control and DRL with Loihi

Inference Control Loop on Loihi

Limited inference speed with Loihi when compared 
with other processors for the same control task

• Frame-based inference requires multiple Loihi steps 
to produce one control command

• Input/Output bandwidth becomes a bottleneck of 
Loihi for high-dimensional observation and action

Real-world Robotic Reinforcement Learning

Loihi
Agent

Observation

Action

Reward

Experience memory 
generation

Memory replay training

Exploration Training

Extend our approach to a continuous and 
autonomous robotic learning system on 
Loihi for real-world applications

• Experience generation replacing 
experience storage

• Minibatch training and high-precision 
gradient encoding



In Conclusion:

❖ Towards energy-efficient and versatile 
robotic perception and control solutions 
applicable to Loihi-controlled mobile 
robots.

❖ General solution for training spiking 
neural network in complex real-world 
reinforcement learning applications.

This research is supported by Intel's Neuromorphic Research Community (INRC) Global Research Award


