

Deep Reinforcement Learning with Spiking Neural Network for Robot Navigation and Continuous Control

Guangzhi Tang, Neelesh Kumar, Raymond Yoo

Advisor: Konstantinos Michmizos

Computational Brain Lab, Computer Science, Rutgers University

2021 Intel INRC Winter Workshop

Loihi-run robot applications at ComBra Lab

Neuromorphic SLAM

(Spiking CPG, ICONS 2020)

(Oculomotor, BioRob 2020*)

Pros:

- 1. Fast IO and computation.
- 2. Consistent in repetitive and specialized tasks.

Cons:

- 1. Costs a lot of energy.
- 2. Lacks robustness and versatility.

Spiking Reinforcement Learning

Robot Planning and Control with Reinforcement Learning

Maximize Cumulative Reward

Observation: LiDAR, Point Clouds, IMU, Tactile ...

Action: Wheel Velocity, Joint Force, Decision ...

Reward: Goal Reaching, Collision, Moving Speed, ...

Loihi-run robot applications at ComBra Lab

Neuromorphic SLAM

(1D SLAM, IROS 2019)

With GC-PC Learning

(2D Mapping, NICE 2020)

Spiking Locomotion Control

(Spiking CPG, ICONS 2020)

(Oculomotor, BioRob 2020*)

Spiking Reinforcement Learning

(Navigation, IROS 2020)

(Cont. Control, CoRL 2020) * Loihi version to be published

Reinforcement co-Learning for Mapless Navigation

Hybrid Training with SDDPG Deep Critic Network Spiking Actor Network

- DNN and SNN are trained jointly using gradient descent
- Hybrid training allows DNN and SNN to overcome each other's limitations through a shared representation learning

Energy-Efficient Mapless Navigation

Guangzhi Tang, et al. "Reinforcement co-Learning of Deep and Spiking Neural Networks for Energy-Efficient Mapless Navigation with Neuromorphic Hardware." IROS 2020

Overview of Mapless Navigation Training

Curriculum Learning: Train from easy to hard

Train Sequentially with Random Start-Goal Pairs

(Hard)

(Easy)

Free Path

Partially Block Path

Fully Block Path

Everything Combined

SDDPG: Spiking Deep Deterministic Policy Gradient

Spiking Actor Network: Forward Propagation

Spiking Actor Network: Backward Propagation

Spiking Actor Network: Backward Propagation

Maximize action value Q with loss function:

$$L = -Q$$

Gradient propagates through critic network:

 $\nabla_{\mathbf{Action}} L = \mathbf{W}_c^{(n+1)'} \cdot \nabla_{a^{(n+1)}} L$

Spatial and temporal gradients of spiking neurons:

$$\nabla_{\mathbf{v}^{(t)(k)}} L = z(\mathbf{v}^{(t)(k)}) \cdot \nabla_{\mathbf{o}^{(t)(k)}} L + d_v(1 - \mathbf{o}^{(t)(k)}) \cdot \nabla_{\mathbf{v}^{(t+1)(k)}} L$$

$$\nabla_{\mathbf{c}^{(t)(k)}} L = \nabla_{\mathbf{v}^{(t+1)(k)}} L + d_c \nabla_{\mathbf{c}^{(t+1)(k)}} L$$

$$\nabla_{\mathbf{o}^{(t)(k-1)}} L = \mathbf{W}^{(k)'} \cdot \nabla_{\mathbf{c}^{(t)(k)}} L$$

Propagate gradient to presynaptic layer

Spiking Actor Network: Backward Propagation

Combining gradients from all timesteps and update weights and biases:

$$\nabla_{\mathbf{W}^{(k)}} L = \sum_{t=1}^{T} \mathbf{o}^{(t)(k-1)} \cdot \nabla_{\mathbf{c}^{(t)(k)}} L$$
$$\nabla_{\mathbf{b}^{(k)}} L = \sum_{t=1}^{T} \nabla_{\mathbf{c}^{(t)(k)}} L$$

Update network parameters every T timesteps

Realization on Loihi Neuromorphic Processor

- Realize the trained SAN onto Loihi with low precision weights using layerwise rescaling
- ROS communicates with Loihi using data channels
- Deploy encoder and decoder on Loihi's low-frequency x86 cores to reduce data transfer load
- ROS-Loihi interaction framework controls the mobile robot in real-time

Spiking Neural Network for Autonomous Navigation

Spiking Neural Network for Autonomous Navigation

Deep Network on Jetson TX2

SNN on Loihi

Speed x4

Spiking Neural Network for Autonomous Navigation

SNN shows higher successful rate navigating in complex environment

High-dimensional Continuous Control

OpenAI Robot Hand

Google Robot Arm Farm

CSIRO Weaver Hexapod

Boston Dynamic Spot Robot

- Robot systems for complex applications often have high-dimensional observation and action space
- Optimality of the control policy highly depends on the encoding precision of the continuous observation and action
- Encoding precision of individual spiking neuron is limited due to event-based computation
- Especially problematic when a small inference timestep is used for better energy efficiency

Population-coded Spiking Actor Network (PopSAN)

- Encodes each dimension of the observation and action spaces in individual neuron populations with learnable receptive fields
- Supports a wide spectrum of DRL algorithms (DDPG, TD3, SAC, and PPO) to learn energy-efficient solutions for continuous control problems

Guangzhi Tang, et al. "Deep Reinforcement Learning with Population-coded Spiking Neural Network for Continuous Control." CoRL 2020

Input Neuron Populations in PopSAN

Each dimension of **S** is encoded by a population of neurons with neuron activity defined by:

$$A_E = exp(-1/2 \cdot ((S_i - \mu)/\sigma)^2)$$

Neuron receptive field is defined by (μ, σ) , which are trainable

Input Neuron Populations in PopSAN

Gradients from Post-synaptic Layer

Population representing one dimension of ${f S}$ using 10 spiking neurons

Input Neuron Populations in PopSAN

PopSAN trained using TD3 for Hopper-v3 (Learnable Encoder) (Fixed Encoder) Average Rewards [x 1k] 3 3 2 2 - In Pop 10 - In Pop 5 - In Pop 3 - In Pop 2 2 8 10 2 8 10 0 4 6 Δ 6 Training Steps [x 100k]

- Learnable encoder performs better than fixed encoder
- Decrease of population size hurts the performance of PopSAN

Output Neuron Populations in PopSAN

Spikes from Pre-synaptic Layer

Output populations are fully connected to the last hidden layer of PopSAN.

Each dimension of A is decoded by the weighted sum of neuron activities in the population:

$$A_i = \frac{1}{T} \sum_{t=1}^T W_i O_i(t)$$

Neuron receptive field is defined by W, which are trainable

Output Neuron Populations in PopSAN

Gradients to Pre-synaptic Layer

range of action

Output Neuron Populations in PopSAN

Gradients to Pre-synaptic Layer

range of action

Real-time Loihi Control with PopSAN

HalfCheetah

Hopper

(Trained using TD3 algorithm)

Real-time Loihi Control with PopSAN

Walker2d

(Trained using TD3 algorithm)

PopSAN trained using on-policy and off-policy DRL

PopSAN achieved **the same level of performance** as the Deep Actor Networks across all tasks, while **140 times more energy efficient** during inference.

Challenges for Robot Control and DRL with Loihi

Inference Control Loop on Loihi

Limited inference speed with Loihi when compared with other processors for the same control task

 Methache-Basied inference Pequires nullfin le 4Joihi steps DNN CPU 15.51 58.93 7450 7909.86 58.93 7450 7909.86 12174.46 DNN TX2(N) 1.24 1.76 750 2346.71
DNN TX2(N) 1.24 1.76 750 2346.71
Imput/Output bandwidth becomes as bottleneed of Pepoithi for hitch-dimensional Observation and action

Power performance and inference speed across hardware

Challenges for Robot Control and DRL with Loihi

Inference Control Loop on Loihi

Limited inference speed with Loihi when compared with other processors for the same control task

- Frame-based inference requires multiple Loihi steps to produce one control command
- Input/Output bandwidth becomes a bottleneck of Loihi for high-dimensional observation and action

Extend our approach to a continuous and autonomous robotic learning system on Loihi for real-world applications

- Experience generation replacing experience storage
- Minibatch training and high-precision gradient encoding

In Conclusion:

- Towards energy-efficient and versatile robotic perception and control solutions applicable to Loihi-controlled mobile robots.
- General solution for training spiking neural network in complex real-world reinforcement learning applications.

