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3 Approaches to Learning on Loihi

2

On-chip 
learning

Discussion  

● Works well (slightly reduced accuracy)
● Once deployed, network does not learn anymore
● Training on a GPU is very costly, especially relevant on 

mobile devices

Conversion

ANN->SNN mapping (NxTF, NengoDL, SNN 
toolbox, LSNN, ΣΔ,...)

Offline SNN training (SLAYER, STDB) 

● So far, only last layer on-chip training or use of 
feedback alignment (no vanilla backprop)

● Mostly usage of embedded CPU necessary

Online gradient-based

Delta-rule, DECOLLE, EMSTDP, ...

● Not much theory
● Networks are mostly hand tuned and only contain 

learning at specific locations
● Questionable scalability and real-world usability

Non gradient approaches

Few shot learning,
Associative Memory, ...
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Motivation

Screenshot from
Mike Davies’ talk on Monday
INRC Workshop 2021

→ LSNN is the only deep RNN mapping technique for Loihi so far
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lpRNN Pipeline
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Inference on LoihiOffline-Training in Tensorflow Mapping to Loihi



lpRNN Pipeline
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Inference on LoihiOffline-Training in Tensorflow

Train with BPTT using lpRNN 
model (not Loihi specific, 
but quantization constraints 
are implemented)

Mapping to Loihi

α ∈ [0,1] - retention ratio
σ - ReLU

Mozer (1992); Beer (1995); Jaeger et al. (2007); Nair (2019)

lpRNN equation: 



lpRNN Pipeline
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Inference on Loihi

Generate input spikes 
(currently in Brian2) and feed 
them into Loihi

Offline-Training in Tensorflow

Train with BPTT using lpRNN 
model 

Mapping to Loihi



lpRNN Pipeline
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Inference on Loihi

Generate input spikes 
(currently in Brian2) and feed 
them into Loihi

Offline-Training in Tensorflow

Train with BPTT using lpRNN 
model 

Example:

Mapping to Loihi

dense →  RNN → dense



lpRNN Pipeline
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Inference on Loihi

Generate input spikes 
(currently in Brian2) and feed 
them into Loihi

Offline-Training in Tensorflow

Train with BPTT using lpRNN 
model

Example:

Mapping to Loihi

dense →  RNN → dense

lpRNN cell
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State of the cell 
(lp filtered spikes)

Input (weighted 
sum of previous 
layer states)

spikes

Input vs. State (error) 
→ if state too low → spikes

→ The state follows the input current

lpRNN Cell - Sigma Delta Neuron with Low-Pass Filtering

M. Nair (2019) Mapping high-performance RNNs to in-memory neuromorphic chips

Also read: Gerstner and Kistler (2002), Yoon (2016), Zambrano and Bohte (2016), 
Yin, Corradi and Bohte (2020)



ΣΔ Neuron Model on Loihi
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Neuron model on Loihi
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→ Fairly simple biologically plausible 
2-compartment neuron on Loihi (AdIF, 
Gerstner and Kistler, 2002)



Use as a Reservoir Network

Reservoir of 128 neurons
to classify two waveforms
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Use as a Feedforward Network (MNIST)

Set 𝜏 to 1, so that there is no low pass filtering of the input

5 dense layers (128 neurons)
CPU ANN : 97.9%
Loihi SNN : 93%
(without excessive fine tuning)
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Google Speech Command Task 1 (35 words version)

“down” “zero”

Dataset with 35 words: 
Backward, Bed, Bird, Cat, Dog, Down, Eight, Five, Follow, Forward, Four, Go, Happy, House, Learn, Left, Marvin, 
Nine, No, Off, On, One, Right, Seven, Sheila, Six, Stop, Three, Tree, Two, Up, Visual, Wow, Yes, Zero

151 
P. Warden Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition

Unlike CNNs,
the RNN receives 
time slices of the input

→ real-time operation



Network structure

Google Speech Command Task  

M
el

sp
ec

tro
gr

am
 8

0

2D
 N

or
m

 

Dense
   64

D
en

se
  1

28

lpRNN
  128

lpRNN
  128

D
en

se
   

32
Dense
   32
 

Output
    36

              
SNN

Loihi

B
N

B
at

ch
 n

or
m

 

16



17

Sparse RNN state
→ Advantage for Loihi

“Zero” 
(label 35)

Current amplitude

Google Speech Command Task  

Count spikes 
or look at 
output state
(fb current)

lp
R
N
N

Out



Benchmarking
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lpRNN performs slightly better than LSTM

Caveat: lpRNN performs poorly on text modeling or other usual LSTM tasks

Task Vanilla RNN LSTM lpRNN lpRNN on Loihi

Google Commands 
(Train.)

26% 99.1% 96.8% -

Google Commands 
(Test.)

27% 92% 93% 86-87% 
(~94% ANN match)



Power Consumption

Hardware Static Power 
(mW)

Dynamic
Power (mW)

Total Power 
(mW)

Latency 
(ms)

Energy per 
inference (mJ)

EDP 
(uJs)

On Nahuku32 (using 8 cores)
Without other probes, with spikegens
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Possible savings by weight pruning and 

sparsity regularization

Optimization of I/O

1 second speech recording!
(1750 Loihi timesteps)
→ suited for real-time always-on systems 
unlike CNN where time is converted to space



Future Work

● Complete energy profiling

● More benchmarks

● Whole pipeline on Loihi (use raw data instead of spectrogram) 
→ Promising simulation results

● Looking forward to Lava and Loihi 2 (with sigma-delta support in the API)
Accuracy will increase when numerical precision can be distributed better

20



Take-Home Messages

● lpRNN cell replaces more complicated (and so far not implementable) LSTM/GRU for on-chip inference of 

natural real-time input data (e.g. audio, biomedical)

● BPTT Training with spikes is not necessary if the spiking neurons are able to represent the state faithfully

● Sigma-delta neurons can achieve this faithful state representation  and can be implemented on Loihi with 

close to state-of-the-art performance

More info (Loihi not yet included):

M.Nair and G. Indiveri (2019), Mapping high-performance RNNs to in-memory neuromorphic chips (arXiv:1905.10692 v4)
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Problems of Spiking On-Chip Backpropagation

Weight transport problem:  For correct credit assignment, feedback weights must be the same as 

feedforward weights.

Backwards computation problem:  Forward and backward passes implement different computations.

Gradient storage problem: Error gradients must be computed and stored separately from activations.

Activation storage problem: Forward activations need to be kept in memory for the backward pass.

Differentiability problem: Non-differentiability of spikes .

Hardware constraints problem: Constraints on plasticity mechanisms. Information needs to be local, 

i.e. only shared between neurons that are synaptically connected. Sufficient weight bit precision is 

needed for training.

23Liao, Leibo and Poggio (2016)



Spiking Backpropagation Approaches

New approaches may help to enable a spiking implementation:

● Lee, J. H., Delbruck, T., & Pfeiffer, M., Frontiers in neuroscience 2016

● Dendritic cortical microcircuits – Sacramento, J., Costa, R. P., Bengio, Y., & Senn, W., NeurIPS 2018.

● Eligibility Propagation – Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (TU Graz), on arxiv, 

Jan 25, 2019.

● Surrogate Gradient Learning – Neftci, E. O., Mostafa, H., & Zenke, F., on arxiv, Jan 28, 2019.

● Superspike - Zenke, F., & Ganguli, S.: Neural computation, 2018.

● Feedback Alignment - Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J., Nature comm, 2016.        Arash, 

S., Lillicrap, T.P., & Tweed, D.B. Neural computation 2017.
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Idea of this Project

Implementation of the (vanilla) backpropagation algorithm in the neural 
substrate (no SNIPs, just adaptation to hardware constraints)
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Based on:

Sornborger, A., Tao, L., Snyder, J., & Zlotnik, A. (2019), NICE.



Backpropagation Algorithm
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Update for a single neuron: 

𝛿 of next layer
“error” Derivative of 

activation function
Input



Backpropagation Algorithm
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Update for a single neuron: 

𝛿 of next layer
“error” Derivative of 

activation function
Input

𝛿 of next layer

Backpropagation to previous layers: 



Network Schematic and Mechanism
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𝛿 of next layer
“error” Derivative of 

activation 
function

Input

We need to route information through the network!



Synfire-Gated Synfire Chain

Wang, Z., Sornborger, A. T., & Tao, L. (2016). 
Graded, dynamically routable information processing with synfire-gated synfire chains. 
PLoS computational biology 29

Synfire-gated SFC route information/spikes through a network

Intuition: All neurons are inhibited globally, the ones allowed to fire are gated on 
(they only actually fire if they also get additional input from the net though)

“Like switching neurons on and off based on a schedule”
Classical SFC Literature:
Abeles (1982, 1991)
Hertz (1997)
Goedeke and Diesmann (2008) 
Diesmann et al. (1999)



Raster Plot of Spikes (Pattern )
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31xm hm

𝛿 of next layer
“error” Derivative of 

activation 
function

Input

Mechanism - Feedforward
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+

-

There are twice as many error than output 
neurons (positive and negative errors)

→ 2 weight update phases (potentiation and 
depression, governed by “reinforcement 
channel”) 

xm hm

Mechanism - Error
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𝛿 of next layer
“error” Derivative of 

activation 
function

Input

xm hm

Mechanism - Backpropagation

Gated Hebbian learning
in 2 phases
(for potentiation and depression)

→ Can be done in just 14 Loihi timesteps
(with binary encoding)
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Cannot be solved with a single layer!

Representative Example:
Weights converge after about 400 it.
error -> 0

Results: XOR

2         6        1

00→ 0
01→ 1
10→ 1
11→ 0



XOR - Ablation of First Layer Learning (Sanity Check)

35



Preliminary Results: MNIST on Loihi

● So far: 80% train., 70% test
● 3.6 ms per sample (incl. training)

● Without first layer training → stuck at 60%

→ Algorithm works and does backprop!

36

Binary
MNIST ds 
10x10

Hidden 
200

Out
10



Conclusion

● Proof of principle of the backpropagation algorithm in a spiking network 
● Framework of synfire-gated activity allows for enormous flexibility as we 

can implement operations that are not otherwise suited for SNN

Further improvements:

● Use STDP (instead of 2 global phases)

● Replace part of the backward network by bidirectional connections

More info:

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2020, March). Implementing Backpropagation for Learning on Neuromorphic Spiking Hardware. In 

Proceedings of the Neuro-inspired Computational Elements Workshop (pp. 1-3).

Sornborger, A., Tao, L., Snyder, J., & Zlotnik, A. (2019, March). A pulse-gated, neural implementation of the backpropagation algorithm. In Proceedings of the 7th 
Annual Neuro-inspired Computational Elements Workshop (pp. 1-9). 37
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END

More questions?

alpren@ini.uzh.ch or on Slack
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