
A Loihi Implementation of Backpropagation using
Gated Synfire Chains
Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, Andrew Sornborger

Low-Pass RNN using Sigma-Delta Neurons on Loihi
Alpha Renner, Gauthier Boeshertz, Manu Nair

LA-UR-21-21175

3 Approaches to Learning on Loihi

2

On-chip
learning

Discussion

● Works well (slightly reduced accuracy)
● Once deployed, network does not learn anymore
● Training on a GPU is very costly, especially relevant on

mobile devices

Conversion

ANN->SNN mapping (NxTF, NengoDL, SNN
toolbox, LSNN, ΣΔ,...)

Offline SNN training (SLAYER, STDB)

● So far, only last layer on-chip training or use of
feedback alignment (no vanilla backprop)

● Mostly usage of embedded CPU necessary

Online gradient-based

Delta-rule, DECOLLE, EMSTDP, ...

● Not much theory
● Networks are mostly hand tuned and only contain

learning at specific locations
● Questionable scalability and real-world usability

Non gradient approaches

Few shot learning,
Associative Memory, ...

()

Low-Pass RNN using Sigma-Delta Neurons
on Loihi

Alpha Renner1

Gauthier Boeshertz2

Manu Nair1,3

1 Institute of Neuroinformatics (INI), University of Zurich and ETH Zurich, Switzerland
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
3 Synthara AG, Zürich, Switzerland

3

Motivation

Screenshot from
Mike Davies’ talk on Monday
INRC Workshop 2021

→ LSNN is the only deep RNN mapping technique for Loihi so far
4

lpRNN Pipeline

5

Inference on LoihiOffline-Training in Tensorflow Mapping to Loihi

lpRNN Pipeline

6

Inference on LoihiOffline-Training in Tensorflow

Train with BPTT using lpRNN
model (not Loihi specific,
but quantization constraints
are implemented)

Mapping to Loihi

α ∈ [0,1] - retention ratio
σ - ReLU

Mozer (1992); Beer (1995); Jaeger et al. (2007); Nair (2019)

lpRNN equation:

lpRNN Pipeline

7

Inference on Loihi

Generate input spikes
(currently in Brian2) and feed
them into Loihi

Offline-Training in Tensorflow

Train with BPTT using lpRNN
model

Mapping to Loihi

lpRNN Pipeline

8

Inference on Loihi

Generate input spikes
(currently in Brian2) and feed
them into Loihi

Offline-Training in Tensorflow

Train with BPTT using lpRNN
model

Example:

Mapping to Loihi

dense → RNN → dense

lpRNN Pipeline

9

Inference on Loihi

Generate input spikes
(currently in Brian2) and feed
them into Loihi

Offline-Training in Tensorflow

Train with BPTT using lpRNN
model

Example:

Mapping to Loihi

dense → RNN → dense

lpRNN cell

10

State of the cell
(lp filtered spikes)

Input (weighted
sum of previous
layer states)

spikes

Input vs. State (error)
→ if state too low → spikes

→ The state follows the input current

lpRNN Cell - Sigma Delta Neuron with Low-Pass Filtering

M. Nair (2019) Mapping high-performance RNNs to in-memory neuromorphic chips

Also read: Gerstner and Kistler (2002), Yoon (2016), Zambrano and Bohte (2016),
Yin, Corradi and Bohte (2020)

ΣΔ Neuron Model on Loihi

VE

IH
VF

Isyn

w
fb

+ -

w
ff

w
rec

2 Loihi
compartments

11

Neuron model on Loihi

VE

IH
VF

Isyn

w
fb

+ -

w
ff

w
rec

12

→ Fairly simple biologically plausible
2-compartment neuron on Loihi (AdIF,
Gerstner and Kistler, 2002)

Use as a Reservoir Network

Reservoir of 128 neurons
to classify two waveforms

13

Use as a Feedforward Network (MNIST)

Set 𝜏 to 1, so that there is no low pass filtering of the input

5 dense layers (128 neurons)
CPU ANN : 97.9%
Loihi SNN : 93%
(without excessive fine tuning)

14

Google Speech Command Task 1 (35 words version)

“down” “zero”

Dataset with 35 words:
Backward, Bed, Bird, Cat, Dog, Down, Eight, Five, Follow, Forward, Four, Go, Happy, House, Learn, Left, Marvin,
Nine, No, Off, On, One, Right, Seven, Sheila, Six, Stop, Three, Tree, Two, Up, Visual, Wow, Yes, Zero

151
P. Warden Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition

Unlike CNNs,
the RNN receives
time slices of the input

→ real-time operation

Network structure

Google Speech Command Task

M
el

sp
ec

tro
gr

am
 8

0

2D
 N

or
m

Dense
 64

D
en

se
 1

28

lpRNN
 128

lpRNN
 128

D
en

se

32
Dense
 32

Output
 36

SNN

Loihi

B
N

B
at

ch
 n

or
m

16

17

Sparse RNN state
→ Advantage for Loihi

“Zero”
(label 35)

Current amplitude

Google Speech Command Task

Count spikes
or look at
output state
(fb current)

lp
R
N
N

Out

Benchmarking

18

lpRNN performs slightly better than LSTM

Caveat: lpRNN performs poorly on text modeling or other usual LSTM tasks

Task Vanilla RNN LSTM lpRNN lpRNN on Loihi

Google Commands
(Train.)

26% 99.1% 96.8% -

Google Commands
(Test.)

27% 92% 93% 86-87%
(~94% ANN match)

Power Consumption

Hardware Static Power
(mW)

Dynamic
Power (mW)

Total Power
(mW)

Latency
(ms)

Energy per
inference (mJ)

EDP
(uJs)

On Nahuku32 (using 8 cores)
Without other probes, with spikegens

19

Possible savings by weight pruning and

sparsity regularization

Optimization of I/O

1 second speech recording!
(1750 Loihi timesteps)
→ suited for real-time always-on systems
unlike CNN where time is converted to space

Future Work

● Complete energy profiling

● More benchmarks

● Whole pipeline on Loihi (use raw data instead of spectrogram)
→ Promising simulation results

● Looking forward to Lava and Loihi 2 (with sigma-delta support in the API)
Accuracy will increase when numerical precision can be distributed better

20

Take-Home Messages

● lpRNN cell replaces more complicated (and so far not implementable) LSTM/GRU for on-chip inference of

natural real-time input data (e.g. audio, biomedical)

● BPTT Training with spikes is not necessary if the spiking neurons are able to represent the state faithfully

● Sigma-delta neurons can achieve this faithful state representation and can be implemented on Loihi with

close to state-of-the-art performance

More info (Loihi not yet included):

M.Nair and G. Indiveri (2019), Mapping high-performance RNNs to in-memory neuromorphic chips (arXiv:1905.10692 v4)

21

A Loihi Implementation of Backpropagation
using Gated Synfire Chains

Alpha Renner1, Forrest Sheldon2, Anatoly Zlotnik2, Louis Tao3,
Andrew Sornborger2

1 Institute of Neuroinformatics (INI), University of Zurich and ETH Zurich, Switzerland
2 Los Alamos National Laboratory, Los Alamos, New Mexico, USA
3 Center for Quantitative Biology, Peking University, Beijing, China

22

LA-UR-21-21175

Problems of Spiking On-Chip Backpropagation

Weight transport problem: For correct credit assignment, feedback weights must be the same as

feedforward weights.

Backwards computation problem: Forward and backward passes implement different computations.

Gradient storage problem: Error gradients must be computed and stored separately from activations.

Activation storage problem: Forward activations need to be kept in memory for the backward pass.

Differentiability problem: Non-differentiability of spikes .

Hardware constraints problem: Constraints on plasticity mechanisms. Information needs to be local,

i.e. only shared between neurons that are synaptically connected. Sufficient weight bit precision is

needed for training.

23Liao, Leibo and Poggio (2016)

Spiking Backpropagation Approaches

New approaches may help to enable a spiking implementation:

● Lee, J. H., Delbruck, T., & Pfeiffer, M., Frontiers in neuroscience 2016

● Dendritic cortical microcircuits – Sacramento, J., Costa, R. P., Bengio, Y., & Senn, W., NeurIPS 2018.

● Eligibility Propagation – Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (TU Graz), on arxiv,

Jan 25, 2019.

● Surrogate Gradient Learning – Neftci, E. O., Mostafa, H., & Zenke, F., on arxiv, Jan 28, 2019.

● Superspike - Zenke, F., & Ganguli, S.: Neural computation, 2018.

● Feedback Alignment - Lillicrap, T. P., Cownden, D., Tweed, D. B., & Akerman, C. J., Nature comm, 2016. Arash,

S., Lillicrap, T.P., & Tweed, D.B. Neural computation 2017.

24

Idea of this Project

Implementation of the (vanilla) backpropagation algorithm in the neural
substrate (no SNIPs, just adaptation to hardware constraints)

25

Based on:

Sornborger, A., Tao, L., Snyder, J., & Zlotnik, A. (2019), NICE.

Backpropagation Algorithm

26

Update for a single neuron:

𝛿 of next layer
“error” Derivative of

activation function
Input

Backpropagation Algorithm

27

Update for a single neuron:

𝛿 of next layer
“error” Derivative of

activation function
Input

𝛿 of next layer

Backpropagation to previous layers:

Network Schematic and Mechanism

28

𝛿 of next layer
“error” Derivative of

activation
function

Input

We need to route information through the network!

Synfire-Gated Synfire Chain

Wang, Z., Sornborger, A. T., & Tao, L. (2016).
Graded, dynamically routable information processing with synfire-gated synfire chains.
PLoS computational biology 29

Synfire-gated SFC route information/spikes through a network

Intuition: All neurons are inhibited globally, the ones allowed to fire are gated on
(they only actually fire if they also get additional input from the net though)

“Like switching neurons on and off based on a schedule”
Classical SFC Literature:
Abeles (1982, 1991)
Hertz (1997)
Goedeke and Diesmann (2008)
Diesmann et al. (1999)

Raster Plot of Spikes (Pattern)

30

31xm hm

𝛿 of next layer
“error” Derivative of

activation
function

Input

Mechanism - Feedforward

32

+

-

There are twice as many error than output
neurons (positive and negative errors)

→ 2 weight update phases (potentiation and
depression, governed by “reinforcement
channel”)

xm hm

Mechanism - Error

33

𝛿 of next layer
“error” Derivative of

activation
function

Input

xm hm

Mechanism - Backpropagation

Gated Hebbian learning
in 2 phases
(for potentiation and depression)

→ Can be done in just 14 Loihi timesteps
(with binary encoding)

34

Cannot be solved with a single layer!

Representative Example:
Weights converge after about 400 it.
error -> 0

Results: XOR

2 6 1

00→ 0
01→ 1
10→ 1
11→ 0

XOR - Ablation of First Layer Learning (Sanity Check)

35

Preliminary Results: MNIST on Loihi

● So far: 80% train., 70% test
● 3.6 ms per sample (incl. training)

● Without first layer training → stuck at 60%

→ Algorithm works and does backprop!

36

Binary
MNIST ds
10x10

Hidden
200

Out
10

Conclusion

● Proof of principle of the backpropagation algorithm in a spiking network
● Framework of synfire-gated activity allows for enormous flexibility as we

can implement operations that are not otherwise suited for SNN

Further improvements:

● Use STDP (instead of 2 global phases)

● Replace part of the backward network by bidirectional connections

More info:

Renner, A., Sheldon, F., Zlotnik, A., Tao, L., & Sornborger, A. (2020, March). Implementing Backpropagation for Learning on Neuromorphic Spiking Hardware. In

Proceedings of the Neuro-inspired Computational Elements Workshop (pp. 1-3).

Sornborger, A., Tao, L., Snyder, J., & Zlotnik, A. (2019, March). A pulse-gated, neural implementation of the backpropagation algorithm. In Proceedings of the 7th
Annual Neuro-inspired Computational Elements Workshop (pp. 1-9). 37

38

Intel Labs for Loihi support and hosting of the workshop.

Collaborators:
Backprop project: Andrew Sornborger, Anatoly Zlotnik, Forrest Sheldon (at LANL)
lpRNN project: Gauthier Boeshertz, Manu Nair

Advisors at INI: Yulia Sandamirskaya, Giacomo Indiveri
Discussions: Yigit Demirag, Melika Payvand

Funding by the Swiss National Science Foundation (SNSF).

Thank you!

END

More questions?

alpren@ini.uzh.ch or on Slack

39

mailto:alpren@ini.uzh.ch

