INRC Workshop, February 2021

Lava Implementation of Biologically Plausible Deep Learning

with Structured Neurons

Laura Kriener¹, Jakob Jordan¹, Walter Senn², Mihai Petrovici¹

¹ NeuroTMA-Group - Department of Physiology - University of Bern

² Computational Neuroscience Group - Department of Physiology - University of Bern

Learning with local information

In general:

$$\Delta w = \eta \left(r_{
m tgt} - r_{
m nrn}
ight) r_{
m in}$$

Learning with local information

add. signal

In general:

$$\Delta w = \eta \left(r_{
m tgt} - r_{
m nrn}
ight) r_{
m in}$$

For multicompartment-neurons:

$$r_{
m tgt} = r_{
m soma}$$
 $r_{
m nrn} = arphi(u_{
m comp})$

Laura Kriener

(Urbanczik, Senn 2014)

Deep network built out of microcircuits (Sacramento 2018)

MNIST handwritten digit images

Challenges for implementation on neuromorphic hardware

- Neuron model: multicompartment-neurons
- Synaptic plasticity: using multiple post-synaptic variables
- Communication: rate-based
- → Increased flexibility of new generation Loihi chips necessary

Recap: What you need to know about Lava

- Everything is a process
- Hierarchical structure of processes
- Leaf processes compute dynamics
- Other processes connect leaf processes

Hierarchical network of microcircuits in Lava

Hierarchical network of microcircuits in Lava

Baseline implementation: first results

- On simulation backend

- Removes several restrictions of chip: e.g. floating-point variables, parameter ranges, ...

- Starting point for systematic adaptation to chip spec

Comparison between numpy simulation and lava implementation

u pyr_soma hidden layer (TRAIN)

Baseline implementation: small classification task

Dataset with 3 classes: horizontal, vertical, diagonal

Validation loss and accuracy during training

One-hot encoding in ouptut layer

Adapting to the neuromorphic substrate

Adapting to the neuromorphic substrate

Adapting to the neuromorphic substrate

Summary:

- Dendritic microcircuits implements bio-plausible backprop
- New generation of Loihi chips will better support microcircuits
- Formulation of microcircuits within the Lava framework

Outlook:

- Adapt model to neuromorphic substrate
- Optimize model for performance on neuromorphic substrate

Q&A at the end of live-session

Feb. 10th: 11:45-12:30

Bio-Plausible Deep Learning with Structured Neurons in Lava

Microcircuit model

Layer process

Department of Physiology, University of Bern

Network process